Welke vormen hebben multivariate verbanden? – Chapter 10

10.1 Welke rol speelt causaliteit in verbanden?

In veel wetenschappelijke studies wordt gekeken naar meer dan één of twee variabelen. Multivariate methoden worden dan gebruikt. Vooral de causale relatie tussen variabelen wordt veel bestudeerd, maar een causale relatie vaststellen is niet gemakkelijk. Het schijnbaar causale verband kan namelijk ook worden veroorzaakt door een andere variabele. Met statistische controle wordt bekeken of een verband tussen variabelen verandert of zelfs verdwijnt als de invloed van andere variabelen wordt verwijderd..

Een causaal verband bestaat uit een verklarende variabele (x) en een responsvariabele (y), waarin x de oorzaak is van y. In schema: X → Y. Dit is asymmetrisch, omdat dit niet per se hoeft te betekenen dat y ook x veroorzaakt.

Er is sprake van een causaal verband als aan drie criteria wordt voldaan:

  1. Er moet een verband zijn tussen de variabelen.

  2. De gebeurtenissen voltrekken zich in een logische tijdsvolgorde.

  3. Andere verklaringen zijn uitgesloten.

Een verband is noodzakelijk voor een causaal verband, maar een verband betekent niet dat er per se sprake is van causaliteit. Er kan ook een verband zijn zonder dat het een het ander veroorzaakt.

Het is meestal gelijk duidelijk wat een logische tijdsvolgorde is. De verklarende variabele gaat vooraf aan de responsvariabele, bijvoorbeeld bepaalde persoonlijke eigenschappen gaan vooraf aan bepaald gedrag. Soms is het echter niet gelijk duidelijk welke variabele de andere variabele veroorzaakt.

Naast x en y is er soms een extra variabele z voor een alternatieve uitleg. Met observatiestudies kan nooit worden bewezen dat een variabele een andere variabele veroorzaakt, want dit is nooit zeker. Causaliteit kan meestal niet worden weerlegd door een enkele uitschieter of anekdotisch tegenbewijs. Als een bepaalde wandelaar nooit blaren krijgt, wil dat niet zeggen dat wandelen geen blaarvorming veroorzaakt.

Het is makkelijker om causaliteit vast te stellen met gerandomiseerde experimenten dan met observatiestudies. Bij randomisatie worden namelijk willekeurig twee groepen aangewezen en is het tijdsframe van tevoren bepaald.

10.2 Hoe controleer je of andere variabelen een causaal verband beïnvloeden?

Om causaliteit vast te stellen, moeten andere verklaringen zijn uitgesloten. Dit is vaak heel lastig. Het uitsluiten van de invloed van andere variabelen op een causale verband kan door die andere variabelen te controleren. Controleren betekent het uitschakelen of op een constante waarde houden van andere variabelen. De andere variabelen heten de controlevariabelen. Het controleren betekent zorgen dat de controlevariabelen geen invloed meer hebben op het verband tussen x en y.

Bij een gerandomiseerd experiment is er als het ware ook sprake van gecontroleerde variabelen. De subjecten zijn willekeurig geselecteerd en de andere variabelen manifesteren zich op een willekeurige manier bij de subjecten.

Statistische controle is anders dan experimentele controle. Bij statistische controle worden subjecten met bepaalde eigenschappen bij elkaar gegroepeerd. Bij observatiestudies in de sociale wetenschappen worden vaak groepen gevormd op basis van sociaal-economische status, opleiding of inkomen.

Het verband tussen twee kwantitatieve variabelen wordt weergegeven in een puntgrafiek. Om dit verband te controleren voor een categorische variabele, kun je de gemiddelden vergelijken.

Het verband tussen twee categorische variabelen wordt weergegeven in een kruistabel. Om dit verband te controleren voor een derde variabele, kan elke waarde van de derde variabele in een aparte kruistabel worden getoond. De aparte kruistabellen heten dan partial tables.

Het effect van een controlevariabele is meestal niet volledig afwezig, maar slechts miniem.

Bij een kwantitatieve en een categorische variabele beschrijf je het verband door de gemiddelden te vergelijken. Bij twee categorische variabelen maak je kruistabellen om het verband te onderzoeken.

Een lurking variabele is niet gemeten, maar wel van invloed op het causale verband. Soms zijn onderzoekers niet op de hoogte van de variabele of het feit dat deze meespeelt bij de resultaten van het onderzoek.

10.3 Welke soorten multivariate verbanden bestaan er?

Er bestaan verschillende vormen van multivariate verbanden. De responsvariabele y heeft dan meerdere verklarende variabelen en controlevariabelen, die worden genoteerd als x1, x2, enzovoorts.

Er is sprake van onechte verbanden (spurious associations) wanneer zowel de verklarende variabele x1 als de responsvariabele y afhankelijk zijn van een derde variabele (x2), en wanneer het verband tussen de verklarende variabele (x1) en de responsvariabele (y) verdwijnt wanneer x2 wordt gecontroleerd. Er bestaat hierbij geen causale relatie tussen x1 en y. In schema:

spurious association

Bij kettingverbanden (chain relationships) veroorzaakt de verklarende variabele (x1) een derde variabele (x2), die op zijn beurt weer de responsvariabele (y) veroorzaakt. De derde variabele (x2) wordt ook wel de interveniërende variabele of de mediator genoemd. Ook bij kettingverbanden verdwijnt het verband zodra x2 gecontroleerd wordt. In schema:

chain association

Het verschil tussen een onecht verband en een kettingverband ligt in de causale volgorde. Bij een onecht verband gaat x2 vooraf aan zowel x1 als y. Bij een kettingverband bemiddelt x2 tussen x1 en y.

In de werkelijkheid hebben responsvariabelen bijna altijd meer dan één oorzaak. In dat geval heeft y meerdere oorzaken. Soms zijn deze oorzaken onafhankelijk, maar meestal houden deze oorzaken ook weer verband met elkaar. Dit betekent dat bijvoorbeeld x1 behalve een direct effect op y ook een indirect effect op y kan hebben via x2. In schema:

multiple causes

Bij een onderdrukkende variabele (suppressor variable) lijkt er geen verband te zijn tussen x1 en y, totdat x2 verdwijnt bij een controle. De x2 is hier een onderdrukkende variabele. Dit kan bijvoorbeeld gebeuren wanneer x2 positief gecorreleerd is met y, maar ook negatief gecorreleerd met x1. Daarom is het zelfs wanneer er in eerste instantie geen verband lijkt te zijn tussen twee variabelen verstandig om alsnog voor andere variabelen te controleren.

Er is sprake van statistische interactie tussen x1 en x2 en hun effect op y wanneer het daadwerkelijke effect van x1 op y verandert bij andere waarden van x2. De verklarende variabelen, x1 en x2, worden ook wel predictoren genoemd.

Een voorbeeld van statistische interactie is te zien tussen het inkomen van mensen met kinderen en mensen zonder kinderen, en de opleiding die zij hebben gehad. Kinderloze mensen verdienen gemiddeld meer verdienen dan mensen met kinderen. Ook is bekend dat hoogopgeleiden meer verdienen dan laagopgeleiden. Er is sprake van statistische interactie wanneer opleiding leidt tot meer inkomen, meer voor kinderlozen dan voor mensen met kinderen. Bijvoorbeeld wanneer kinderlozen per opleidingsjaar 5% in uurloon stijgen en mensen met kinderen per opleidingsjaar maar 3% in uurloon stijgen. Er is dan interactie tussen opleiding en kinderloosheid in het effect op uurloon.

Er zijn nog veel meer structuren mogelijk in multivariate verbanden. Het kan zelfs zo zijn dat een verband de tegenovergestelde richting (positief versus negatief) aanneemt zodra een variabele gecontroleerd wordt, dit heet Simpson's paradox. Het kan bijvoorbeeld zo zijn dat ingeschat wordt dat een student hogere cijfers haalt dan een tweede student, maar dat de eerste student in de praktijk toch lagere cijfers haalt, omdat deze moeilijkere vakken kiest.

Het is mogelijk dat twee verklarende variabelen beide een effect hebben op een responsvariabele, terwijl de twee verklarende variabelen ook met elkaar in verband staan. Dit heet een verstoring (confounding). Als een verstorende variabele over het hoofd wordt gezien, treedt er omitted variable bias op. Een grote uitdaging binnen de sociale wetenschappen is het opmerken van verstorende variabelen.

10.4 Welke gevolgen heeft statistische controle voor inferentie?

Als x2 wordt gecontroleerd voor het x1y verband, kan dit gevolgen hebben voor de inferentie. Er kan bijvoorbeeld een kleinere steekproefgrootte zijn bij een bepaalde waarde van x2. Het betrouwbaarheidsinterval kan wijder zijn en de toetsingsgrootheden vallen kleiner uit. Uit een chi-kwadraattoets kan een kleinere waarde komen, die mogelijk wordt veroorzaakt door de kleinere steekproefgrootte.

Als een categorische variabele wordt gecontroleerd, moeten er aparte kruistabellen worden gemaakt voor de verschillende categorieën. Bij een ordinale variabele worden er meestal minstens drie of vier kruistabellen gemaakt.

Vaak worden de parameterwaarden gemeten bij verschillende waarden van de controlevariabele. Als x2 een constante waarde van 10 heeft, kan het x1y verband namelijk anders zijn dan als x2 een constante waarde van 20 heeft. In plaats van het gebruikelijke betrouwbaarheidsinterval om het verschil tussen proporties of gemiddelden te analyseren, kan er dan een betrouwbaarheidsinterval worden gemaakt voor het verschil tussen de parameters bij verschillende waarden van de controlevariabelen. De formule voor het betrouwbaarheidsinterval om het effect van statistische controle te meten is:

Als 0 niet binnen het interval valt, dan verschillen de parameterwaarden. Als het x1y verband gelijk is in de partiële analyses, dan kan er een meting worden gevormd om de sterkte van het verband te meten waarbij rekening wordt gehouden met de controlevariabele. Dit heet een partial association.

TentamenTickets

  • De kunst is niet om de naam te weten van de verschillende soorten multivariate verbanden, maar om ze te kunnen toepassen op echte praktijksituaties. Oefeningen maken heeft in ieder geval een causaal verband met beter worden in statistiek.

  • De term 'controleren' wordt binnen de statistiek op een andere manier gebruikt dan buiten de statistiek. Bekijk bij vraagstukken over statistiek dus of de gebruikelijke betekenis van controleren wordt bedoeld (nagaan of iets klopt), of de puur statistische betekenis (het effect van een derde variabele doen verdwijnen).

  • Een begrip dat hier nog niet expliciet is behandeld, is een moderator, een algemeen begrip. Een moderator is een variabele die het verband verandert.

  • Je kunt je afvragen of multivariate verbanden los kunnen worden behandeld als onderwerp, of dat dit eigenlijk samen met multipele regressie een onderwerp vormt. In ieder geval is multipele regressie (meer dan) gecompliceerd genoeg, het is beter om het in stapjes te behandelen.

Image

Access: 
Public

Image

Join WorldSupporter!

Join with a free account for more service, or become a member for full access to exclusives and extra support of WorldSupporter >>

Check: concept of JoHo WorldSupporter

Concept of JoHo WorldSupporter

JoHo WorldSupporter mission and vision:

  • JoHo wants to enable people and organizations to develop and work better together, and thereby contribute to a tolerant tolerant and sustainable world. Through physical and online platforms, it support personal development and promote international cooperation is encouraged.

JoHo concept:

  • As a JoHo donor, member or insured, you provide support to the JoHo objectives. JoHo then supports you with tools, coaching and benefits in the areas of personal development and international activities.
  • JoHo's core services include: study support, competence development, coaching and insurance mediation when departure abroad.

Join JoHo WorldSupporter!

for a modest and sustainable investment in yourself, and a valued contribution to what JoHo stands for

Image

 

 

Contributions: posts

Help other WorldSupporters with additions, improvements and tips

Add new contribution

CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Image CAPTCHA
Enter the characters shown in the image.

Image

Check more: related and most recent topics and summaries
Check more: study fields and working areas
Check more: institutions, jobs and organizations

Image

Follow the author: Annemarie JoHo
Share this page!
Statistics
2275
Submenu & Search

Search only via club, country, goal, study, topic or sector