Hemorragische diathese (verhoogde bloedingsneiging) kan ontstaan ten gevolge van:Verhoogde fragiliteit van bloedvatenBloedplaatjes deficiëntie of dysfunctieVerstoring van de coagulatie, ofwel bloedstollingEr zijn verschillende laboratoriumtesten:Protrombine tijd (PT): beoordeelt de extrinsieke stollingscascade, waarbij de stolling van plasma wordt gemeten in seconden na toevoeging van exogeen tromboplastine. Verlengde PT duidt op deficiëntie van factor V, VII, X, protrombine of fibrinogeen.Partiele tromboplastine tijd (PTT): beoordeelt de intrinsieke stollingscascade, waarbij de stolling van plasma wordt gemeten in seconden na toevoeging van glaspoeder, kaoline, cefaline en Ca2+. Een verlengde PTT duidt op deficiëntie van factor V, VIII, IX, X, XI, XII, protrombine of fibrinogeen.Plaatjes telling: de hoeveelheid bloedplaatjes in het bloed kan een indicatie geven voor bepaalde aandoeningen. De normaalwaarde is 150 – 300 x 103 plaatjes/µL. Trombocytopenie duidt op een samenklontering van bloedplaatjes en een trombocytose duidt op een myeloproliferatieve aandoening.Test van plaatjesfunctie: Op dit moment is er geen test die een adequate toetsing van de functies van bloedplaatjes kan uitvoeren. Experimentele testen zijn in ontwikkeling. Meer gespecialiseerde testen kunnen de hoeveelheid fibrinogeen, fibrine eindproducten en specifieke stollingsfactoren meten. Een plaatjesaggregatietest en bloedingstijd test...


Access options

The full content is only visible for JoHo WorldSupporter members with full online access.

  • For information about international JoHo WorldSupporter memberships, read more here.
  • Are you already a member?
    • During the account creation you can select 'I am a JoHo WorldSupporter Member with full online access'.
    • Became a member after you've created the account, or you upgraded your membership, then you can change the settings of your account on your WorldSupporter user page
  • or fill out the contact form

 

For Dutch visitors

Toegang tot pagina of document:

Word JoHo donateur voor online toegang

Je bent al donateur, maar je hebt geen toegang?

  • Log in, of maak een account aan als je dat nog niet eerder hebt gedaan op worldsupporter.org.
  • Bij het aanmaken van je account kan je direct aangeven dat je JoHo WorldSupporter donateur bent (met danwel zonder 'full online access', of je past dit later aan op de user page van je account
  • Kom je er niet uit, neem dan even contact op! Of check de veel gestelde vragen

Kom je er niet helemaal uit of heb je problemen met inloggen?

  • Lees de antwoorden op de meest gestelde vragen.
  • Of laat je helpen door één van de JoHo medewerkers door het online contactformulier in te vullen

-----------------------------------------------


JoHo WorldSupporter donateur worden

JoHo membership zonder extra services (donateurschap) = €5 per kalenderjaar

  • Voor steun aan de JoHo WorldSupporter en Smokey projecten en een bijdrage aan alle activiteiten op het gebied van internationale samenwerking en talentontwikkeling
  • Voor gebruik van de basisfuncties van JoHo WorldSupporter.org
  • Voor het gebruik van de kortingen en voordelen bij partners
  • Voor gebruik van de voordelen bij verzekeringen en reisverzekeringen zonder assurantiebelasting

JoHo membership met extra services (abonnee services) = €10 per kalenderjaar

€10 per kalenderjaar: Online toegang Only

  • Voor volledige online toegang en gebruik van alle online boeksamenvattingen en studietools op WorldSupporter.org en JoHo.org
  • voor online toegang tot de tools en services voor werk in het buitenland, lange reizen, vrijwilligerswerk, stages en studie in het buitenland
  • voor online toegang tot de tools en services voor emigratie of lang verblijf in het buitenland
  • voor online toegang tot de tools en services voor competentieverbetering en kwaliteitenonderzoek
  • Voor extra steun aan JoHo, WorldSupporter en Smokey projecten

Steun JoHo en steun jezelf door JoHo WorldSupporter donateur te worden

Direct Donateur Worden

Join World Supporter
Join World Supporter
Log in or create your free account

Why create an account?

  • Your WorldSupporter account gives you access to all functionalities of the platform
  • Once you are logged in, you can:
    • Save pages to your favorites
    • Give feedback or share contributions
    • participate in discussions
    • share your own contributions through the 7 WorldSupporter tools
Follow the author: Medicine Supporter
Promotions
special isis de wereld in

Waag jij binnenkort de sprong naar het buitenland? Verzeker jezelf van een goede ervaring met de JoHo Special ISIS verzekering

verzekering studeren in het buitenland

Ga jij binnenkort studeren in het buitenland?
Regel je zorg- en reisverzekering via JoHo!

Access level of this page
  • Public
  • WorldSupporters only
  • JoHo members
  • Private
Statistics
[totalcount]
Comments, Compliments & Kudos

Add new contribution

CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Image CAPTCHA
Enter the characters shown in the image.
WorldSupporter Resources
Samenvatting literatuur bij Mechanisms of Disease 2 - Deel 1 - Geneeskunde UL (2016/2017)

Samenvatting literatuur bij Mechanisms of Disease 2 - Deel 1 - Geneeskunde UL (2016/2017)


Genetica en kanker

Inleiding

Alle kankers zijn aandoeningen van somatische cellen, maar sommige worden veroorzaakt door overgeërfde germline mutaties. De risico op kanker wordt bepaald door een combinatie van genetische en omgevingsfactoren. Zo bestaan industriële kankervormen door chemicaliën en kiezen mensen voor een ongezonde levensstijl met roken en alcohol. Mensen met genetisch kortere telomeren hebben meer risico op kanker. De belangrijkste mutaties die kanker veroorzaken zijn die in tumor suppressor genen (TSG), oncogenen en DNA mismatch repair genen. Ook spelen epigenitica een rol. Dit zijn erfelijke factoren die niets met de DNAsequence te maken hebben.

Verschillende soorten onderzoek dragen bij aan kennis over kankers: epidemiologische, familiaire, tweeling, associatie, biochemische, dierlijke en virale factoren worden onderzocht. Borstkanker is de meest voorkomende kanker bij vrouwen. De incidentie van kanker blijkt te variëren in verschillende populaties blijkt uit epidemiologische studies. Door naar het voorkomen van een kanker in de familie te kijken, kan de erfelijke factor onderzocht worden. Tweelingstudies en muizenstudies bewijzen dat omgevingsfactoren nog meer bepalend zijn dan erfelijke belasting. Uit associatiestudies blijkt dat bloedgroep A extra risico geeft op maagkanker. Sommige biochemische factoren geven een predispositie voor kanker. Uit muizenstudies blijkt dat bepaalde virussen de kans op kanker verhogen, deze bouwen een oncogen in het DNA in of hebben RNA dat de celdeling bevorderd. Retrovirussen hebben maar drie genen nodig (gag: voor antigenen, pol: voor reverse transcriptase en env: voor de envelop eiwitten) maar kunnen ook een vierde, oncogen, hebben voor transformatie.

Oncogenen

Cellulaire oncogenen (ook wel c-onc genoemd) zijn gemuteerde varianten van normale genen, proto-oncogenen genoemd, die een grote rol spelen bij differentiatie en celgroei. Virale oncogenen (v-onc) worden door virussen in de cel gebracht. Waarschijnlijk ontstaan ze door mutaties bij replicatie van virussen. Bij kanker zijn vaak (meerdere) chromosomen aangedaan door translocatie, herrangschikking of inserties en deleties. Hierdoor kan de activiteit of functie van een proto-oncogen worden veranderd. Bij chronische myeloïde leukemie wisselen chromosoom 9 en 22 bijvoorbeeld een deel uit door reciproke translocatie, wat leidt tot een Philadelphia Ph1 chromosoom waarbij een gefuseerd eiwit (ABL-BCR) ontstaat. Bij Burkitt Lymphoma wisselen 8 en 14 een deel, waardoor de expressie van het MYC-oncogen meer dan vertienvoudigd wordt door de regulatiefactoren van een immuunglobuline.

Proto-oncogenen kunnen ook geactiveerd worden door gen amplificatie, een overlevingsmechanisme waarbij er meerdere kopieën van een gen worden aangemaakt. In 10% van de tumoren zien we deze ‘extra (stukjes) chromosoom’, genaamd double minute chromosomes of homogeneously staining regions. Dit treedt vaak op bij de MYC-familie van genen. Het veranderen van een cel door het toevoegen van nieuw DNA heet transfectie. De oncogeniteit van Ras en KIT wordt geactiveerd door een puntmutatie.

Naast het verlies van de functie van de proto-oncogenen hebben kankercellen vaak ook problemen met de signaal transductie, een pathway wat zorgt dat proliferatie en differentiatie goed verloopt. Proto-oncogenen zijn door de evolutie heen goed in stand gebleven en hebben een functie gekregen. Ze zorgen voor signaal transductie door:

  • Fosforylering van serine, threonine en tyrosine, waardoor bijvoorbeeld de kinase activiteit verandert. Dit resulteert in signaaltransductie.

  • GTPase waardoor de GDP-GTP cyclus en de Ras eiwitten aangezet worden.

  • Eiwitten in de nucleus die de celcyclus, DNA replicatie en gen-expressie regelen.

Typen oncogenen

  • Groeifactoren: stoffen die de cel van G0 naar de start van de celcyclus brengen, wat leidt tot de groei van de cel. Een voorbeeld hiervan is v-SIS.

  • Groeifactorreceptoren: deze receptoren kunnen op de celmembraan of in het cytoplasma liggen en wanneer ze continue op ‘aan’ staan, wordt er aan de controle voorbijgegaan. Een voorbeeld van een gemuteerde tyrosine kinase is ERB-B. Dit komt meestal niet door translocatie maar door een punt-mutatie.

  • Intracellulaire signaaltransductie factoren: continue geactiveerde eiwitten met GTPase activiteit (GTP  GDP) of cytoplasmische serine threonine kinases.

  • DNA-bindende kerneiwitten: deze beïnvloeden de genexpressie. Voorbeelden zijn FOS, JUN en ERB-A. MYC en MYB vallen hier ook onder, zij brengen de cel van de G1 naar de S fase, waardoor de cel niet in de rustfase komt.

  • Celcyclusfactoren: door de remming op de celcyclus weg te nemen, komt de cel in constante proliferatie. Bcl-2 remt apoptose, wat zorgt voor accumulatie van cellen.

Tumor suppressor genen

De functie van TSG is het remmen van ongewenste celproliferatie. Een mutatie bij de TSG zijn de grootste erfelijke veroorzaker van kanker. Als een van de genen nog goed is en tumorvorming nog remt, is deze aandoening recessief. Net als bij de oncogenen is een erfelijke variant niet genoeg om kanker te veroorzaken, er moeten nog omgevingsfactoren bij.

Retinoblastoma is een kinderkanker die door een gemuteerd TSG komt. Bij erfelijke vorm is het vaak bilateraal en niet-erfelijke vorm unilateraal. De two-hit hypothese stelt dat een recessieve kanker het vaakst voorkomt als een allel door een germline mutatie defect is en de ander door een somatische mutatie ook kapot gaat. Bij retinoblastoma gaat het om een deletie in 13q14. Het RB1 gen codeert voor het p110rb eiwit dat de regulatie van de celcylcus remt. Als dit eiwit gedeactiveerd wordt, kan de cel naar de S fase. Dit gebeurt continu bij retinoblastoma, waardoor de cel blijft delen. Bij loss of heterozygosity (LOH) is er maar één (soort) allel. Dit kan op verschillende manieren gebeuren, o.a. door mitotische misjunctie of deleties.

Gemuteerd p53 is een oncogen dat met RAS samenwerkt. Gezond p53 wordt ook wel de ‘guardian’ van het genoom genoemd, als er teveel mutaties zijn na duplicatie wordt herstel of apoptose ingezet. Dit doet het tussen de G1 en S fase. Gemuteerde p53 is meer stabiel en kan reageren met normaal p53, waardoor het de normale kan inactiveren: het is dus dominant. Het Li-Fraumeni syndroom komt door een erfelijke aandoening van p53. Het veroorzaakt veel verschillende vormen van kanker al op jonge leeftijd. Wanneer een lichaamseigen p53 eiwit is gebonden aan een T antigeen, is het een TP53 tumor suppressor gen. Dit is het gen dat het vaakst gemuteerd is bij kanker, zoals blaaskanker, colonkanker en longkanker.

Epigenetica van kanker

Zowel hypo- als hypermethylatie is een epigenetische factor die kanker kan veroorzaken. Hypomethylatie kan leiden tot loss of imprinting (LOI), waardoor delen van het chromosoom geactiveerd worden die inactief hadden moeten zijn. Hierdoor wordt de expressie van sommige eiwitten hoger dan normaal. Ook wordt het chromosoom instabiel, wat een risicofactor voor kanker is. Als laatste kan LOI ook leiden tot het activeren van een oncogen. De meest voorkomende LOI is die van IGF2, waardoor er teveel insuline-like growth factor wordt geproduceerd. Hypermethylatie geeft risico’s als inactivatie van TSG’s. Hypermethylatie komt het vaakst voor als een C en een G naast elkaar liggen, dit heet een CpG nucleotide eiland. Dit veroorzaakt vaak colonkanker.

Telomeren

Telomeren zijn de uiteindes van chromosomen. De sequence is telkens hetzelfde en wordt herhaald: TTAGGG. Hier wordt telomerase mee gecodeerd, wat de telomeren verlengd. Bij elke celdeling worden de telomeren korter. Als de telomeren te kort zijn, is het chromosoom niet beschermd bij deling. Veel kankers en verouderingsziekten worden geassocieerd met korte telomeren. Kankers hebben vaak wel veel telomerase, waardoor cellen veel langer door kunnen delen. Hierdoor worden korte telomeren in stand gehouden en blijft deling mogelijk.

Genetica

Één op de veertig van de mensen in de ontwikkelde landen krijgt colon- of darmkanker. De meeste colorectale carcinomen ontwikkelen uit goedaardige adenomen. Kleine poliepen kunnen in 5 tot 10 jaar tot kanker ontwikkelen. Hoe kleiner de poliep, hoe kleiner de kans dat kanker ontwikkelt. Vooral verlies van allelen op chromosoom 5 leidt tot colonkanker. LOH op 5 en 18 samen met RAS en P53 mutaties zorgen dat een benigne adenoma tot carcinoma ontwikkelt. 1% van de mensen met colonkanker heeft de autosomale dominante ziekte Familiale Adenomateuze Polypose (FAP). Hierdoor krijg je grote poliepen op de darm met 90% kans op darmkanker. Een deletie van 5q21 zorgt voor een verband tussen FAP en DNA markers. Meestal komt dit door LOH.

Bij veel colorectale carcinomen is een deel van chromosoom 18 verloren gegaan. Dit gen, DCC (Deleted in colorectal cancer), zorgt voor cel-cel en cel-basaal membraan verbindingen. Bij familiaire colorectale kanker zijn er vaak een paar kleine poliepen en zit de kanker vaak rechts. We noemen dit Lynch syndroom of HNPCC (hereditary, non-polyposis colorectal cancer). Bij dit syndroom zijn meer allelen aanwezig dan bij FAP. Dit komt doordat de DNA mismatch genen aangetast zijn en microsatelliet instabiliteit ontstaat. Dit begint als een LOH waarna na een tijdje het tweede allel aangetast wordt. Analyse van tumor DNA of immunohistochemie (IHC) toont of HNPCC-gerelateerde mutaties aanwezig zijn.

Er zijn een aantal polypose syndromen, deze komen niet vaak voor. Hieronder vallen:

  • MYH polyposis, gedraagt zich autosomaal negatief, wordt veroorzaakt door mutatie op 1p33, waardoor mismatch repair minder goed werkt.

  • Bij Juvenile Polyposis Syndrome, een autosomaal dominante aandoening, is het risico op kanker 13 keer verhoogd. Kanker diagnose gemiddeld na 30 jaar. SMAD4 18q en BMPRIA 10q22 zijn hierbij betrokken.

  • Bij Cowden ziekte, of multipele hamartoma syndroom, autosomaal dominant, komt macrocefalie voor. Het verhoogt de kans op borst en thyroïd kanker. Dit komt door mutaties van het PTEN gen op 10q23.

  • Bij het Peutz-Jegher Syndroom, autosomaal dominant, geeft donkere melanine vlekjes op de lippen die bij volwassenheid kunnen verdwijnen. Vaak hebben patiënten veel koliekpijnen en verhoogde kans op het jong krijgen van kanker op verschillende plekken. Het komt door een mutatie STK11 op 19p.

Borstkanker

Één op de twaalf vrouwen in het westen krijgt borstkanker, meestal tussen de 40 en 55 jaar oud. 1/3 van de zieke vrouwen krijgt ook metastasen. 1/5 heeft het in de familie zitten. Dan komt het vaak vroeg, bilateraal en in combinatie met ovariumkanker tot uiting. Ook het voorkomen bij nauw verwante familie is hiervoor een aanwijzing.

Er zijn heel veel oncogenen betrokken en LOH. De genen BRCA1 op chromosoom 17 en BRCA2 op 13 zijn oncogenen die dominant zijn voor borstkanker. Bij het BRCA1 gen is er 60-85% kans om borstkanker te ontwikkelen. Ook kan het zorgen voor het ontwikkelen van ovarium- en prostaatkanker. Bij BRCA2 is dit verband minder duidelijk maar wel aanwezig. Bij mannen met BRCA2 is de kans op borstkanker 6%.

Ovariumcarcinoom

Één op de zeventig vrouwen ontwikkelt ovariumcarcinoom, de kans neemt met de leeftijd toe. Meestal ontstaat de kanker in het epitheel. Vaak is het een LOH op 11q25. 5% van de vrouwen met ovariumcarcinoom heeft het in de familie en bij slechts 1% is door een dominante aandoening, meestal komt het door één gen mutatie. Vaak zijn BRCA1 en BRCA2 aangedaan, maar soms ook de genen betrokken bij het HPNCC/Lynch Syndroom.

Prostaatkanker

Na borstkanker is prostaatkanker de meest voorkomende vorm van kanker. Mannen hebben een kans van 10% om het te krijgen en 3% om eraan te sterven. LOH’s van genen op verschillende chromosomen kunnen het veroorzaken, één enkele dominante locus kan al genoeg zijn om prostaatkanker te doen ontstaan. HPC1 en HPC2 zijn de genen voor erfelijke prostaatkanker, maar er zijn veel meer genen die aangedaan kunnen zijn. Ook BRCA1 en BRCA2 kunnen prostaatkanker veroorzaken. De meeste niet-familiaire prostaatkankers ontstaan na het 65ste levensjaar.

Genetic counseling

Vaak is de familiegeschiedenis erg belangrijk bij kanker. Sommige families hebben een ‘familiair cancer-disproposing’ syndroom, bijvoorbeeld het Li-Fraumeni syndroom. Daaraan moet worden gedacht bij het op jonge leeftijd optreden van kanker of wanneer kanker in meerdere organen ontstaat. Bij 50% van de zeldzame kankers is er een gemuteerd gen overgeërfd. Een aantal recessieve ziektes verhoogt ook de kans op kanker omdat ze zorgen voor chromosoom instabiliteit en zelfs chromosoom breking.

Niet alleen de cancer-predisposing syndromen geven aan dat een individu risico loopt door zijn familie, er zijn veel factoren die meespelen. Hieronder valt het aantal mensen met kanker in de familie, hoe dicht deze bij het individu staan en hoe oud ze waren toen de kanker ontstond. Vaak zijn er niet veel mensen met (dezelfde) kanker in de familie en is het maar de vraag of het in dit geval door erfelijke factoren is ontstaan. In zo’n geval kan men zich beroepen op epidemiologische tabellen, waar de waarschijnlijkheid van de erfelijkheid van kankers staat beschreven. Een voorbeeld hiervan is het Manchester Scoring System voor BRCA1 en BRCA2.

Het grootste doel bij familiaire kanker is de kanker vroeg te ontdekken of zelfs te voorkomen. Dit kan betekenen dat een individu een levenslang dieet, medicijnkuur of screening krijgt. Screening wordt vooral gedaan bij mensen met een familiair risico en bestaat uit allerlei diagnostische testen. Deze testen zijn specifiek voor het soort kanker waarvoor het risico vergroot is: zo wordt bij verdenking van FAP gelet op CHRPE’s (Congenital Hypertrophy of the Retinal Pigment Epithelium).

Door de ontwikkelingen op het gebied van genen en het onderzoeken van het genotype van patiënten, kan er bij bepaalde bijbehorende fenotypes ook al een sterke verdenking op kanker ontstaan. Hoe meer bekend wordt over genen, hoe meer DNA-testen er gedaan zullen worden. Omdat maar een klein deel van de kankers via Mendeliaanse overerving werkt, werkt genetische screening maar bij een klein deel van alle kankers. Toch is screening vaak kosten effectief, waardoor vrouwen in veel landen op BRCA1, BRCA2 en P53 worden getest en families met colorectale kanker ook regelmatig gescreend worden. Bij cancer-predisposing syndromes is de aandoening vaak dominant, waardoor heterozygoten bijna 100% zekerheid hebben dat ze de aandoening ontwikkelen. Daarom worden deze individuen heel vaak gescreend.

Voor- en nadelen van screenen

Ondanks dat veel mensen erg enthousiast zijn over screenen moet er goed gekeken worden naar wat het kost en wat het oplevert. Zo kost screenen van de meest voorkomende kankers veel energie van zowel patiënt als arts. Wie moet er eigenlijk gescreend worden? Bij zeldzame familiaire ziektes is dat makkelijk te bepalen, maar bij complexere varianten van kanker, zoals retinoblastoma, niet.

De leeftijd waarop gescreend moet worden verschilt per kankervorm. Vaak begint de screening 5 jaar voor de leeftijd waarop het jongste familielid kanker kreeg. Bij kankervormen die al in de kindertijd voorkomen, zoals retinoblastoma, begint de screening postnataal.

Bij risico op colonkanker is de screening eens in de 5 jaar, de frequentie neemt toe als er een poliep wordt gevonden. Vanaf een leeftijd van 35 krijgen vrouwen jaarlijks mammografie. Vaak is het moeilijk om te bepalen wat precies bekeken moet worden, omdat niet alle kankervormen makkelijk te screenen zijn.

Screenen op veelvoorkomende kankers

Colorectale kanker is het best te screenen. Hiervoor wordt colonoscopie aangeraden, maar hiervoor is een getrainde arts nodig en is er kans op morbiditeit. Om deze reden zijn er drie criteria, de Amsterdam criteria, bedacht: ten minste 3 familieleden met de aandoening, in minstens 2 opvolgende generaties, bij tenminste één iemand voor de leeftijd van 50.

Bij vrouwen is er vaak kans dat de borstkanker tussen de screeningprocedures in ontwikkeld, dit kan liggen aan het feit dat premenopausaal weefsel minder goed gescreend kan worden dan postmenopausaal weefsel. Ook is het mogelijk dat de radiatie van de screening tot kanker kan leiden, dit risico bestaat voornamelijk bij vrouwen die al op jonge leeftijd gescreend worden. Vaak neemt men dit risico voor lief. Voor de leeftijd van 35 wordt nauwelijks gescreend omdat de resultaten dan nog niet goed te interpreteren zijn.

Ovariumcarcinomen beginnen vaak asymptomatisch. Vroege diagnose kan levens redden maar is moeilijk omdat de plaats van de ovaria moeilijk te screenen is. Ultrasonografie en Doppler kleuring werken het beste. Bij hoge verdenking kan ook laparoscopie worden toegepast. Ook kan gescreend worden op CA125, een glycoproteïne die vaak verhoogd is bij ovariumcarcinoom, maar ook bij andere ziekten. Vaak worden de ovaria profylactisch verwijderd als de vrouw geen kinderen meer wilt.

De behandeling

Er zijn meerdere manieren om kanker te voorkomen. Bij mensen met familiaire cancer-predisposing syndrome wordt vaak voor profylactisch opereren gekozen. Het verwijderen van de baarmoeder, mastectomie, geeft wel weer verhoogd risico op borstkanker. Bij risico op darmkanker wordt een levenslang dieet voorgeschreven. Bij overerfelijke varianten van kanker moet ook over de kinderwens van de patiënt worden nagedacht.

DNA replicaties, reparaties en recombinaties

Inleiding

De diversiteit aan levende organismen hangt af van de genetische veranderingen door miljoenen jaren heen. Om te overleven en reproduceren moeten individuen genetisch stabiel zijn. De meeste DNA schade is tijdelijk en wordt gecorrigeerd door een proces genoemd DNA herstel. Wanneer het herstel faalt, zal er een irreversibele mutatie ontstaan in het DNA, die kan leiden tot een verandering van het eiwit. Een mutatie in geslachtscellen zal worden doorgegeven aan elke cel van het multicellulaire organismen en aan de opvolgende generaties. De andere somatische cellen moeten worden beschermd tegen genetische verandering tijdens het leven van de individu.

DNA replicatie

De beide strengen van de dubbele helix van het DNA bevatten een nucleotidevolgorde die complementair is aan de nucleotidevolgorde van de andere streng. Als we de ene streng A noemen en de andere streng B, vormt streng A een template streng voor streng B, en andersom. Bij replicatie van streng A ontstaat een nieuwe streng B en bij replicatie van streng B ontstaat een nieuwe streng A. Een streng die gebruikt wordt voor replicatie heet een template, de nieuwe streng die langs de template gevormd wordt, heet een replicate. Doordat het mogelijk is om replicates te maken, is de cel in staat om zijn genen te kopiëren. Het kopiëren wordt uitgevoerd door een aantal proteïnen die samen een replicatiemachine vormen.

Bij DNA-replicatie ontstaan uit één dubbele helix twee dubbele helices, die identiek zijn aan het oorspronkelijke DNA. Elke streng van de dubbele helix dient als een template voor een nieuwe streng. Daardoor bevat elke kopie van het DNA uiteindelijk één streng van het originele DNA, enRead more

Samenvattingen, uittreksels, aantekeningen en oefenvragen bij Mechanisms of Disease 1 en 2 - Geneeskunde UL - Studiebundel

Samenvattingen, uittreksels, aantekeningen en oefenvragen bij Mechanisms of Disease 1 en 2 - Geneeskunde UL - Studiebundel

Image

In deze bundel zijn samenvattingen, oefenmaterialen en aantekeningen samengevoegd voor het vak Mechanisms of Disease 1 en Mechanisms of Disease 2 (MOD 1 & 2) voor de opleiding Geneeskunde, jaar 2 aan de Universiteit van Leiden

Heb je zelf samenvattingen en oefenmaterialen? Deel ze met je medestudenten!