Date:
26-02-2019
The Pearson correlation is denoted with r and calculated as follows:
\[r = \frac{covariance\:of\:x\:and\:y}{variability\:of\:x\:and\:y\:seperately}\]
or:
\[r = \frac{\sum{(x-\bar{x})(y-\bar{y})}}{\sqrt{\sum{(x-\bar{x})^2}\sum{(y-\bar{y})^2}}}\]
which is the same as:
\[r = \frac{N \sum{xy}-(\sum{x})(\sum{y})}{\sqrt{[N\sum{x^2}-(\sum{x})^2] [N\sum{y^2}-(\sum{y})^2]}}\]
- N: number of pairs of scores
- x: x scores
- y: y scores
- x̄: mean of x scores
- ȳ: mean of y scores
WorldSupporter Resources:
Liever lui dan moe joepschrijver contributed on 08-06-2019 13:02
In het kader liever lui dan moei ;)
https://www.socscistatistics.com/tests/pearson/default2.aspx
Add new contribution