Access options

      How do you get full online access and services on JoHo WorldSupporter.org?

      1 - Go to www JoHo.org, and join JoHo WorldSupporter by choosing a membership + online access
       
      2 - Return to WorldSupporter.org and create an account with the same email address
       
      3 - State your JoHo WorldSupporter Membership during the creation of your account, and you can start using the services
      • You have online access to all free + all exclusive summaries and study notes on WorldSupporter.org and JoHo.org
      • You can use all services on JoHo WorldSupporter.org (EN/NL)
      • You can make use of the tools for work abroad, long journeys, voluntary work, internships and study abroad on JoHo.org (Dutch service)
      Already an account?
      • If you already have a WorldSupporter account than you can change your account status from 'I am not a JoHo WorldSupporter Member' into 'I am a JoHo WorldSupporter Member with full online access
      • Please note: here too you must have used the same email address.
      Are you having trouble logging in or are you having problems logging in?

      Toegangsopties (NL)

      Hoe krijg je volledige toegang en online services op JoHo WorldSupporter.org?

      1 - Ga naar www JoHo.org, en sluit je aan bij JoHo WorldSupporter door een membership met online toegang te kiezen
      2 - Ga terug naar WorldSupporter.org, en maak een account aan met hetzelfde e-mailadres
      3 - Geef bij het account aanmaken je JoHo WorldSupporter membership aan, en je kunt je services direct gebruiken
      • Je hebt nu online toegang tot alle gratis en alle exclusieve samenvattingen en studiehulp op WorldSupporter.org en JoHo.org
      • Je kunt gebruik maken van alle diensten op JoHo WorldSupporter.org (EN/NL)
      • Op JoHo.org kun je gebruik maken van de tools voor werken in het buitenland, verre reizen, vrijwilligerswerk, stages en studeren in het buitenland
      Heb je al een WorldSupporter account?
      • Wanneer je al eerder een WorldSupporter account hebt aangemaakt dan kan je, nadat je bent aangesloten bij JoHo via je 'membership + online access ook je status op WorldSupporter.org aanpassen
      • Je kunt je status aanpassen van 'I am not a JoHo WorldSupporter Member' naar 'I am a JoHo WorldSupporter Member with 'full online access'.
      • Let op: ook hier moet je dan wel hetzelfde email adres gebruikt hebben
      Kom je er niet helemaal uit of heb je problemen met inloggen?

      Join JoHo WorldSupporter!

      What can you choose from?

      JoHo WorldSupporter membership (= from €5 per calendar year):
      • To support the JoHo WorldSupporter and Smokey projects and to contribute to all activities in the field of international cooperation and talent development
      • To use the basic features of JoHo WorldSupporter.org
      JoHo WorldSupporter membership + online access (= from €10 per calendar year):
      • To support the JoHo WorldSupporter and Smokey projects and to contribute to all activities in the field of international cooperation and talent development
      • To use full services on JoHo WorldSupporter.org (EN/NL)
      • For access to the online book summaries and study notes on JoHo.org and Worldsupporter.org
      • To make use of the tools for work abroad, long journeys, voluntary work, internships and study abroad on JoHo.org (NL service)

      Sluit je aan bij JoHo WorldSupporter!  (NL)

      Waar kan je uit kiezen?

      JoHo membership zonder extra services (donateurschap) = €5 per kalenderjaar
      • Voor steun aan de JoHo WorldSupporter en Smokey projecten en een bijdrage aan alle activiteiten op het gebied van internationale samenwerking en talentontwikkeling
      • Voor gebruik van de basisfuncties van JoHo WorldSupporter.org
      • Voor het gebruik van de kortingen en voordelen bij partners
      • Voor gebruik van de voordelen bij verzekeringen en reisverzekeringen zonder assurantiebelasting
      JoHo membership met extra services (abonnee services):  Online toegang Only= €10 per kalenderjaar
      • Voor volledige online toegang en gebruik van alle online boeksamenvattingen en studietools op WorldSupporter.org en JoHo.org
      • voor online toegang tot de tools en services voor werk in het buitenland, lange reizen, vrijwilligerswerk, stages en studie in het buitenland
      • voor online toegang tot de tools en services voor emigratie of lang verblijf in het buitenland
      • voor online toegang tot de tools en services voor competentieverbetering en kwaliteitenonderzoek
      • Voor extra steun aan JoHo, WorldSupporter en Smokey projecten

      Meld je aan, wordt donateur en maak gebruik van de services

      Title: Zintuigen, Hersenen en Beweging (ZHB) 1 - B1 - Geneeskunde - UU (1415)
      Zintuigen, Hersenen en Beweging (ZHB) 1 - B1 - Geneeskunde - UU (1415)
      Media of Medicine Supporter
      Contributions, Comments & Kudos

      Add new contribution

      CAPTCHA
      This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
      Image CAPTCHA
      Enter the characters shown in the image.
      Supporting content
      Zintuigen, Hersenen en Beweging (ZHB) 1 - B1 - Geneeskunde - UU (1415)

      Zintuigen, Hersenen en Beweging (ZHB) 1 - B1 - Geneeskunde - UU (1415)

      Bevat aantekeningen bij de stof en de colleges en werkgroepen bij het vak uit 2014-2015


      Week 1

      Collegeaantekeningen

      Patiëntbespreking 5

      Interne link Dit jaar kwam er een patiënt langs die in toenemende mate last kreeg van focale uitvalsverschijnselen. Het begon allemaal vier jaar geleden, toen de patiënt (een man) oververmoeid raakte. Dit uitte zich lichamelijk. Het kostte hem steeds meer moeite om te lopen en om vooruit te komen. De oververmoeidheid uitte zich dus in krachtverlies in de benen. Het toedienen van vitamines e.d. hielp niet. Na uitgebreider lichamelijk onderzoek werden er bij de patiënt meerdere (grote) poliepen gevonden in de darmen. Zo’n 30 centimeter van de darmen werden verwijderd, maar dit veranderde niks aan de klachten. Na enkele jaren kon de patiënt eigenlijk niet eens meer op zijn benen staan. Met zijn armen was ondertussen niks aan de hand. Deze functioneerden nog goed en waren zelfs sterker geworden omdat de patiënt deze meer was gaan gebruiken. De patiënt had ook moeite met het ophouden van de plas, hoewel hij altijd nog op tijd bij het toilet was. Zijn huid was vanaf zijn onderbuik naar beneden overgevoelig geworden; een deken deed al pijn. Ook voelde hij constant een irritant en zeurend gevoel. Ook had hij pijn in zijn onderrug.

      Uit het neurologisch onderzoek bleek het volgende:

      • Patiënt is helder, heeft normale spraak en taal

      • Hersenzenuwfuncties zijn normaal

      • Armen werken normaal

      • Beide benen zijn hypertoon en hebben krachtsverlies in de heffers, het gevoel is anders en pijnlijk

      • De spierrekreflexen zijn levendig. De voetzoolreflex is aanwezig volgens Babinski

      Uit deze gegevens blijkt dat de oorzaak van het probleem het meest waarschijnlijk in het
      ruggenmerg zit, aangezien de problemen bilateraal voorkomen en onder één bepaald niveau. Het is door deze gegevens niet/minder waarschijnlijk dat de oorzaak te vinden is in spieren, spierzenuwovergang, zenuw of hersenen.

      Het is verder onwaarschijnlijk dat in het ruggenmerg bloedingen of infarcten voorkomen. Hierbij zouden namelijk acute problemen op moeten treden. Een tumor zou wel waarschijnlijk kunnen zijn, wegens de geleidelijke verergering van het probleem. Uit een MRI-scan bleek echter dat bij deze patiënt sprake was van een spinale durale arterioveneuze fistel. Er was dus een directe overgang tussen een arterie en een vene in een deel van het ruggenmerg. Hierdoor wordt de druk in de venen hoger dan normaal. Er vindt vochtuittreding in de vene plaats. Dit lijdt tot een verdikking van het ruggenmerg. Dit kan tot de genoemde problemen leiden. Bij meneer is de fistel gevuld en afgesloten. Hierdoor zijn de problemen voor een groot deel verholpen. Lopen gaat weer steeds beter.

      Focale uitval kan ook door problemen in de hersenen veroorzaakt worden. Bijvoorbeeld door trauma, beroerte, MS, tumor of ontsteking. Een beroerte komt hiervan het meest voor in Nederland. Oorzaken van een beroerte zijn infarcten, intracerebrale bloedingen en subarachnoïdale bloedingen. Een infarct kan bijvoorbeeld ook weer door verschillende dingen ontstaan. Een voorbeeld is een embolie; een bloedpropje afkomstig uit een arterie of het hart dat naar de hersenen gaat en daar een verstopping veroorzaakt. De symptomen van een herseninfarct zijn acute focale uitval (dit is bijna altijd eenzijdig). Er treedt verder zeer zelden bewustzijnsverlies op bij een herseninfarct. Dit komt doordat je met één intacte hersenhelft over het algemeen goed bij bewustzijn kunt blijven. Bij bijna alle herseninfarcten is maar één hersenhelft aangedaan. Een herseninfarct kan worden behandeld door het toedienen van bloedverdunners of bijvoorbeeld door een mechanische trombectomie. Hierbij wordt met behulp van kathetertjes het bloedpropje uit het bloedvat gehaald.

      Interne linkHoorcollege 5

      Bouwstenen van het zenuwstelsel: neuronen

      Membraanpotentiaal

      Elke cel heeft een rustmembraanpotentiaal. Dit betekent dat er een verschil is in de lading tussen de binnenkant en de buitenkant van de cel, waarbij de binnenkant negatief geladen is t.o.v. de buitenkant. Meestal gaat het om een potentiaal van ongeveer -70 mV, maar dit verschilt. Bij zenuwcellen is het membraanpotentiaal over het algemeen -70 mV.

      De membraanpotentiaal komt tot stand doordat de concentratie van bepaalde ionen binnen en buiten de cel niet gelijk zijn. Zo is de concentratie K+ in de cel veel hoger dan buiten de cel. Voor Na+ geldt het tegenovergestelde. De concentratie hiervan buiten de cel is juist hoger dan binnen de cel. De totale concentratie binnen de cel is echter wel neutraal. Dit is ook zo buiten de cel. Naast dit concentratieverschil van verschillende ionen zijn voor het tot stand komen van een membraanpotentiaal ook ionkanalen nodig, die uitsluitend doorlaatbaar zijn voor één soort ion. Ionen kunnen namelijk niet door de lipofiele dubbellaag van het celmembraan heen, omdat ionen een lading hebben.

      Om het rustmembraanpotentiaal te kunnen verklaren kijken we eerste naar de kaliumionen. Dit doen we aan de hand van een voorbeeld waarbij de concentratie binnen en buiten de cel als volgt zijn:

      Extracellulaire ruimte: 5 mM K+

      5 mM X-

      Intracellulaire ruimte: 150 mM K+

      150 mM X-

      Wanneer er kaliumkanalen in de cel aanwezig zijn, zullen de kaliumionen door de diffusiekracht, die er is door het concentratieverschil, naar buiten diffunderen. Hierdoor ontstaat dan een tekort aan positieve ionen binnenin de cel. De binnenkant van de cel wordt hierdoor negatief geladen ten opzichte van de buitenkant. Als gevolg hiervan ontstaat er een elektrische kracht die tegengesteld is aan de diffusiekracht. Deze elektrische kracht wil de ionen van een plek met positieve lading naar een negatieve lading brengen. K+-ionen zullen hierdoor weer gedeeltelijk in de cel diffunderen totdat er een evenwicht optreedt tussen de twee krachten. Er is nu netto geen transport meer van kaliumionen. Het punt waar het evenwicht zich instelt wordt de kaliumevenwichtspotentiaal genoemd. Dit evenwichtspotentiaal ligt bij -90 mV.

      Met de formule van Nernst kun je de evenwichtspotentiaal van verschillende ionen berekenen.

      Op dezelfde manier kan zich ook voor de natriumionen een evenwichtspotentiaal instellen. Als voorbeeld zijn de volgende ionconcentraties genomen:

      Extracellulaire ruimte: 150 mM Na+

      150 mM X-

      Intracellulaire ruimte: 15 mM Na+

      15 mM X-

      Als gevolg van het concentratieverschil diffunderen natriumionen door de aanwezige natriumkanaaltjes naar binnen. De verschuiving van de natriumionen komt tot stand door de diffusiekracht. Door de verschuiving van natriumionen krijgt de binnenkant van de cel een overschot aan positieve ionen. Hierdoor wordt de binnenkant van het celmembraan positief geladen ten opzicht van de buitenkant. Hierdoor komt ook hier een elektrische kracht tot stand, die er samen met de diffusiekracht voor zorgt dat zich een evenwicht instelt. Er is nu netto geen transport meer van natriumionen. Dit evenwicht wordt de natriumevenwichtspotentiaal genoemd en is ongeveer +60 mV.

      Membraanpotentiaal (Vm)

      Onder normale omstandigheden zijn er natuurlijke zowel natrium- als kaliumionen aanwezig. Ook zijn er natriumkanalen én kaliumkanalen. De membraanpotentiaal die dan ontstaat, zal ergens tussen de evenwichtspotentialen van de aanwezige ionen liggen. De membraanpotentiaal ligt echter niet precies in het midden omdat deze wordt beïnvloed door de permeabiliteit/doorlaatbaarheid voor de afzonderlijke ionen. In de cellen in ons lichaam is de permeabiliteit voor K+ groter dan voor Na+. Het evenwichtspotentiaal van kalium speelt dus een grotere rol bij de bepaling van het totale membraanpotentiaal van een cel. Bij zenuwcellen ontstaat hierdoor uiteindelijk een membraanpotentiaal van -70 mV. De membraanpotentiaal kan berekend worden met de vergelijking van Goldman-Hodgkin-Katz. Hierin wordt ook rekening gehouden met de permeabiliteit van ionen.

      De waarde van -90 mV voor de kaliumkanaaltjes wijkt af van de waarde van -70 mV in de cel. Kleine beetjes kaliumionen zullen dus de cel uitlekken, omdat de diffusiekracht groter is dan de elektrische kracht. De waarde evenwichtspotentiaal van natrium verschilt ook van de uiteindelijke membraanpotentiaal. Hierdoor zullen natriumionen ook naar binnen lekken. Om de Na+- en K+-concentraties toch op peil te houden, is er een Na+/K+-pomp in de cel aanwezig, die tegelijkertijd 3 Na+-ionende cel uit pompt en 2 K+-ionen de cel in pompt en daarbij één molecuul ATP verbruikt. Wanneer deze pomp niet meer werkt, zullen de concentraties niet meer op peil gehouden worden en verdwijnt de membraanpotentiaal. Dit kan allerlei problemen opleveren bij signaaloverdracht.

      Factoren die de ligging van de membraanpotentiaal beïnvloeden zijn dus:

      • Ionconcentraties binnen en buiten de cel (vooral van K+ en Na+)
        Voorbeeld: bij een toename van de extracellulaire kaliumconcentratie, wordt het concentratieverschil tussen binnen en buiten de cel minder groot. De diffusiekracht neemt dus af, er gaan minder kaliumionen naar buiten en het evenwichtspotentiaal van kalium zal minder negatief worden. Hierdoor zal het uiteindelijke membraanpotentiaal minder negatief worden. Er is sprake van depolarisatie..

      • Verandering van permeabiliteit van het celmembraan voor K+- en Na+-ionen (of andere ionen). Dit gegeven wordt door prikkelbare cellen gebruikt voor elektrische signalering.

      Voorbeeld: bij een toename van de geleidbaarheid voor natriumionen, zal de evenwichtspotentiaal van natrium niet veranderen, deze zal zich alleen sneller instellen. De membraanpotentiaal van de cel verandert echter wel. Deze wordt namelijk minder negatief doordat het gewogen gemiddelde tussen de natrium- en kaliumevenwichtspotentiaal meer naar natrium toeschuift, doordat de permeabiliteit van natrium is toegenomen. De natriumionen oefenen nu dus een grotere invloed uit op de liggen van het membraanpotentiaal. Het membraanpotentiaal wordt positiever.

      Toepassing ionconcentratieverschillen en membraanpotentiaal.

      Met de ionconcentratieverschillen binnen en buiten de cel en de membraanpotentiaal kun het lichaam het volgende doen:

      • Tegen een concentratiegradiënt in stoffen opnemen.

      • Elektrische signalering, door verandering membraanpotentiaal. Er zijn twee soorten:

      • Lokale potentialen (transport signaal over korte afstand) Deze zijn kleiner dan actiepotentialen en hebben te maken met uitdoving. Lokale potentialen vinden plaats bij receptoren (zien, tast, reuk) en bij neurale integratie.

      • Actiepotentialen (transport van een boodschap over lange afstand). De actiepotentiaal blijft gelijk in amplitude. Actiepotentialen vinden plaats op neuronen en zijn belangrijk bij het snel uitvoeren van bijvoorbeeld een reflex.

      Bio-elektrische signalen

      Wanneer er een stimulus op het soma of de dendrieten van een neuron binnenkomt, ontstaat er een lokale potentiaal. Dit signaal verplaatst zich over het neuron en komt vervolgens aan bij de axonheuvel. De sterkte van dit signaal is afhankelijk van de afstand die het al heeft afgelegd, want het signaal dooft uit. Wanneer het signaal nog sterk genoeg is om de prikkeldrempel te overschrijden, ontstaat er een actiepotentiaal. Deze verplaatst zich vervolgens langs het axon, zonder uit te doven, totdat het bij de synaps aankomt. Hoe groter de amplitude van een lokaal potentiaal, hoe hoger de frequentie van een actiepotentiaal. De amplitude van een actiepotentiaal blijft steeds gelijk. Als een lokaal potentiaal langer aanhoudt (door bijvoorbeeld lange prikkeling), zal het actiepotentiaal ook langer aanhouden.

      Wanneer er rekking van een spier optreedt, wordt dit opgemerkt door het spierspoeltje. Er treedt daar dan een lokaal potentiaal (depolarisatie) op. In de trigger zone ontstaat dan vervolgens een actiepotentiaal. Actiepotentialen kunnen zo’n 1,5 m afleggen.

      Een actiepotentiaal ontstaat door verandering in permeabiliteit van K+- en Na+-ionen. Wanneer de lokale potentiaal de prikkeldrempel (-55mV) overschrijdt, gaan de spanningsafhankelijk Na+-kanaaltjes open. De natrium-permeabiliteit neemt hierdoor toe. Na+ zal de cel instromen, waardoor de natriumconcentratie in de cel snel toeneemt. Hierdoor depolariseert het membraan en komt de membraanpotentiaal dicht bij de natriumevenwichtspotentiaal te liggen, dus erg positief. Na enige tijd sluiten de natriumkanaaltjes weer (inactivatie) en neemt de K+-permeabiliteit toe, zodat de intracellulaire ruimte weer negatiever wordt en de potentiaal weer afneemt tot rustwaarde. Vervolgens zullen de normale concentraties hersteld worden door de natriumkalium-ATP-ase. De grafiek in afbeelding 2 geeft het verloop van een actiepotentiaal weer.

      De spanningsafhankelijke natriumkanaaltjes hebben een m- en een h-poort aan de binnenkant zitten. Bij depolarisatie gaat het m-poortje open, die in rust gesloten is. Hierdoor stroomt natrium de cel in en wordt de cel verder gedepolariseerd. Het h-poortje reageert later en sluit het natriumkanaaltje weer af (inactivatie). Hierdoor wordt het ook wel inactivatiepoort genoemd. Vanaf dat moment kan natrium niet meer de cel in stromen en wordt de membraanpotentiaal weer minder positief. Tijdens een rustpotentiaal is alleen de m-poort gesloten. In tegenstelling tot wat veel boeken vermelden, neemt de [Na+] in de cel relatief gezien niet noemenswaardig veel toe.

      De spanningsafhankelijke kaliumkanaaltjes hebben een n-poort. Bij depolarisatie gaat dit poortje langzaam open en bij repolarisatie sluit het geleidelijk. Voordat de rustwaarde wordt bereikt, zal de potentiaal tijdelijk nog iets negatiever worden, omdat de permeabiliteit van K+-kanaaltjes nog wat groter is. Er kan zo een tijdelijke hyperpolarisatie ontstaan.

      Tijdens de refractaire periode zijn de Na+-kanalen nog geïnactiveerd, doordat de h-poort traag opent. Het ontstaan van een actiepotentiaal is tijdens de refractaire periode onmogelijk.

      Interne linkHoorcollege 6

      Signaalvoortgeleiding

      Passief en actief

      De geleiding van lokale potentialen wordt ook wel passief genoemd, omdat de potentialen uitdoven. Deze uitdoving gebeurt volgens een exponentieel verband. Zo zal in een bepaalde tijd steeds de helft van het potentiaal uitdoven. Wanneer er sprake is van onverzwakte signaaloverdracht, zoals bij een actiepotentiaal, wordt dit actieve voortgeleiding genoemd.

      Op de axonheuvel tussen soma en axon bevinden zich veel natriumkanalen, zodat daar bij uitstek actiepotentialen ontstaan. Wanneer de lokale potentiaal niet de drempelwaarde voor het ontstaan van een actiepotentiaal in de axonheuvel (-55mV) overschrijdt, dooft het signaal uit. Alleen een genoeg depolariserend signaal kan een actiepotentiaal veroorzaken,

      Kabelmodel

      Om te verklaren waarom een lokaal potentiaal uitdooft, zou je het axon kunnen vergelijken met een kabel. Het cytoplasma is de geleider, maar heeft wel een weerstand. Hoe groter deze weerstand, hoe moeilijker de stroom door de kabel en dus door het axon loopt. Het membraan rond de axon vormt een isolatielaag, maar heeft geen hoge weerstand. Hierdoor zal er telkens wat stroom weglekken. Door deze twee weerstanden is er bij een lokale potentiaal sprake van uitdoving. Er ‘’lekt’’ als het ware steeds een deel van het potentiaal weg.

      Met de lengteconstante (λ) kan aangegeven worden hoe snel een potentiaal in amplitude afneemt. De lengteconstante geeft de afstand aan waarna het signaal tot 37% van de originele hoogte is afgenomen. λ is normaal één tot twee mm en is te berekenen met een formule: zie afbeelding 3

      Zowel een verkleining van membraanweerstand (rm) als vergroting van intracellulaire weerstand (ri) is ongunstig voor de signaalvoortgeleiding. Hierdoor zal het signaal sneller in kracht afnemen.

      Zie afbeelding 4

      Bij actieve voortgeleiding in niet-gemyeliniseerde vezels ontstaan stroomkringetjes (zie figuur 2a), die onderling steeds een volgende stroomkring activeren, waardoor de potentiaal stand houdt en niet uitdooft. Er wordt constant een nieuwe actiepotentiaal veroorzaakt in een omliggend segment van het axon. Bij een kleinere intracellulaire weerstand gaat de voortgeleiding sneller, evenals bij een hogere membraanweerstand.

      Bij actieve voortgeleiding in gemyeliniseerde vezels vindt de voortgeleiding plaats via stroomkringetjes die ontstaan rond de knopen van Ranvier (zie figuur 2b). Dit zijn de plaatsen op de axonen zonder myeline. Er is nu sprake van saltatoire (sprongsgewijze) voortgeleiding. De vele lagen myeline zorgen voor een hoge membraanweerstand, waardoor er weinig stroom weg kan lekker. Ook zijn de natriumkanalen vooral geconcentreerd op de knopen van Ranvier.

      De weerstanden zijn van invloed op de snelheid van voortgeleiding. Een dikke zenuwvezel is gunstig voor snelle signalering, omdat hier de intracellulaire weerstand kleiner is. Bij niet-gemyeliniseerde vezels is de voortgeleidingssnelheid ongeveer 1 m/s. Bij gemyeliniseerde vezels is deze 3-150 m/s. De snelheid wordt dus beïnvloed door de diameter van de axon (ri) en de mate van myelinisatie (rm).

      Overdracht signalen tussen neuronen

      Signaaloverdracht kan plaatsvinden tussen zintuig en neuron, tussen neuron en neuron, tussen neuron en spier of tussen neuron en klier. De contactplaats tussen een neuron en de doelcel wordt een synaps genoemd. Hieronder valt de pre-synaps (deel van de neuron), de synapsspleet en de post-synaps (deel van de doelcel). Neurotransmitters komen vrij uit de pre-synaps en grijpen aan op receptoren op de post-synaps. Hierdoor wordt via verschillende stappen uiteindelijk depolarisatie of hyperpolarisatie opgewekt, afhankelijk van of de neurontransmitter exciterend of inhiberend is. Er zijn twee soorten synapsen: een elektrische en een chemische synaps.

      Elektrische synaps

      Een elektrische synaps is een gap junction, een bepaalde verbinding tussen twee cellen. Cellen zijn bij gap junctions direct met elkaar verbonden via intercellulaire niet-selectieve kanalen, die het cytoplasma van beide cellen verbinden. Hierdoor is zeer snelle signaaloverdracht mogelijk (<<1 ms). Deze overdracht is in twee richtingen mogelijk vanwege een symmetrische situatie; de overdracht is dus bi-directioneel. Het kanaal is niet alleen doorlaatbaar voor ionen, maar ook voor metabolieten. Door de gap junctions wordt dus ook directe communicatie op metabool niveau mogelijk gemaakt. Hoewel een overdracht naar twee kanten kan verlopen, kan een cel een voorkeursrichting hebben. Elektrische synapsen zijn belangrijk voor het hart en komen minder voor in het brein.

      Chemische synaps

      Bij chemische synapsen wordt een actiepotentiaal in de pre-synaps omgezet naar een chemisch signaal (afgifte van een neurotransmitter). In tegenstelling tot gap junctions, kunnen signalen maar één kant op. Het doorgeven van een signaal in een chemische synaps gaat als volgt:

      Neurotransmittermoleculen zitten in blaasjes.

      Een actiepotentiaal komt aan in het presynaptische uiteinde.

      Door depolarisatie gaan spanningsafhankelijke Ca2+ kanalen open. Hierdoor stromen calciumionen het presynaptische uiteinde binnen. De intracellulaire calciumconcentratie stijgt, waardoor de blaasjes zullen fuseren met het presynaptische membraan. Zo wordt de neurotransmitter afgegeven in de synapsspleet.

      De neurotransmitter diffundeert over de synapsspleet en bindt aan een receptor op het postsynaptische membraan. Er zijn twee soorten postsynaptische receptoren in chemische synapsen:

      Access level of this page
      • Public
      • WorldSupporters only
      • JoHo members
      • Private
      Statistics
      [totalcount]