Samenvattingen en Tips bij het vak Toetsende Statistiek - Psychologie Jaar 1 - Universiteit Leiden - Magazine

 

Samenvattingen en Tips bij het vak Toetsende Statistiek - Psychologie Jaar 1 - Universiteit Leiden - Magazine

Image

Over dit Magazine

  • In dit Samenvattingen en Tips bij het vak Toetsende Statistiek - Psychologie Jaar 1 - Universiteit Leiden - Magazine heb ik een aantal samenvattingen en tips rondom het vak Toetsende Statistiek voor jou verzameld.
  • Voor de meest recente boeksamenvattingen en een voorbeeldtentamen kun je altijd terecht op JoHo.org - Samenvattingen en studiehulp bij Toetsende Statistiek.

Studiehulp voor SPSS

  • Hieronder komen nog wat studiehulp tools voor SPSS. Ga naar mijn persoonlijke pagina door rechtsonder deze pagina op mijn foto te klikken en klik op het knopje "Follow" om up to date te blijven!
Bundel Studiehulp SPSS bij het vak Toetsende Statistiek (Universiteit Leiden)

Tentamen Tips

Ik heb een aantal tips voor het tentamen van dit vak op een rijtje gezet om je te helpen tijdens het studeren.

Tentamen Oefenvragen

Psychology Supporter heeft een bundel met TentamenTests gemaakt, waarin een aantal fijne oefenvragen staan om actief met de stof te oefenen! Dit is vooral heel fijn bij statistische vakken, aangezien op het tentamen vragen voorbij zullen komen waarbij je berekeningen moet maken.

Tentamen Tips bij het vak Toetsende Statistiek (Universiteit Leiden)

Eerdere college aantekeningen

  • Hieronder vind je wat oudere college aantekeningen van dit vak die nog steeds erg behulpzaam zijn tijdens het leren!

Image

Collegeaantekeningen Toetsende Statistiek 2015-2016

Collegeaantekeningen Toetsende Statistiek 2015-2016

Deze collegeaantekeningen zijn gebaseerd op het vak Toetsende Statistiek van het jaar 2015-2016, universiteit Leiden.


College 1 Steekproevenverdeling en Hypothesetoetsing

Toetsende statistiek houdt zich bezig met het testen van hypotheses. Hypothesetoetsing is nodig om te kijken of een algemene theorie (deprivatietheoie) nog geldig is voor de populatie waarover de theorie gaat.

Om dit te testen stellen we eerst een onderzoeksvraag op aan de hand van de algemene theorie. Omdat het vrijwel onmogelijk is om de gehele populatie te onderzoeken, worden er steekproeven gedaan om hypotheses te toetsen. Deze steekproeven leveren ons vervolgens verschillende steekpoefgegevens op, waaronder totaalscores en gemiddelden.

Als de steekproefgegevens duidelijk verschillen van de algemene theorie is het wellicht nodig om de theorie aan te passen. In dat geval verwerpen we onze algemene theorie ofwel onze nulhypothese.

Stappenplan voor hypothesetoetsing

De volgende stappen worden doorlopen om een hypothese te toetsen:

  1. Hypothese: het vormen/afleiden van een toetsbare hypothese aan de hand van een algemene theorie/deprivatietheorie.

  2. Steekproevenverdeling: het vaststellen van de steekproevenverdeling

  3. Toetsstatistiek: uitrekenen van de toetsstatistiek die aansluit bij de steekproevenverdeling.

  4. Verwerpingsgebied bepalen: wanneer wordt de hypothese verworpen?

  5. Statistische conclusie: het trekken van een statistische conclusie op basis van de verzamelde gegevens

  6. Inhoudelijke conclusie: het verwoorden van de statistische gegevens/conclusie

Hypothese

Een hypothese is een uitspraak over parameters in een populatie. We maken onderscheid tussen de nulhypothese en de alternatieve hypothese:

  • Nul-hypothese (H0): er bestaat in de populatie geen verschil of relatie, of bij een experiment: de ingreep heeft geen effect op scores in de populatie. H0 is het startpunt van het stappenplan.

  • Alternatieve hypothese (Ha): er bestaat wél een verschil, verandering of relatie in de populatie. Bij een experiment heeft de ingreep wél effect op de scores in de populatie.

De alternatieve hypothese (Ha) kan éénzijdig of tweezijdig zijn ten opzichte van de nulhypothese (H0).

Bij éénzijdige toetsing wordt verwacht dat het gemiddelde van Ha groter of kleiner is dan dat van H0.

Als we verwachten dat het gemiddelde van Ha méér is dan H0, is er sprake van een rechtszijdige alternatieve hypothese, dus als H0: µ = 9, dan Ha: µ > 9.

Als we verwachten dat het gemiddelde van Ha juist minder is dan H0, dan doen we een linkszijdige alternatieve hypothese: H0: µ = 9 en Ha: < 9.

Wanneer we een verschil tussen Ha en H0 verwachten maar eigenlijk geen idee hebben of Ha groter of kleiner is dan H0, kiezen we ervoor om tweezijdig te toetsen. Dus stel: H0: µ = 9, dan Ha: µ ≠ 9.

Steekproevenverdeling

Een steekproevenverdeling is een verdeling van een statistiek, verkregen uit alle mogelijke steekproeven van een bepaalde grootte (n) uit een populatie. Anders gezegd: de steekproevenverdeling bestaat uit de gemiddelden uit meerdere steekproeven. We gebruiken de steekproevenverdeling om toevalsfluctuaties/sampling error als oorzaak van verschillen uit te sluiten.

Als de gemiddelden uit alle steekproeven normaal verdeeld zijn, dan zijn de gestandaardiseerde gemiddelden ook standaard normaal verdeeld. Zij volgen dan de standaard normale verdeling N(0, 1) ofwel de z-verdeling.

Toetsstatistiek

Een toetsstatistiek is een getal dat berekend wordt uit steekproefgegevens en dat gebruikt wordt voor het vergelijken van een steekproefstatistiek en een populatieparameter. Een voorbeeld van een steekproefstatistiek is het gemiddelde van een steekproef (µ). Een voorbeeld van een populatiepatarmater is het gemiddelde van een populatie (x̅). Een voorbeeld van een toetsstatistiek is het gestandaardiseerde gemiddelde z, dat het gestandaardiseerde gemiddelde van een steekproef is → z = (x̅ - µ) / σ.

Het gestandaardiseerde steekproefgemiddelde is een z-score, die kan worden afgezet tegen de standaardnormaalverdeling van de H0 populatie (de z-verdeling). Als H0 waar is, dan ligt z dicht bij nul en als H0 niet waar is, dan ligt z ver van nul.

Verwerpingsgebied of verwerpingsgrens

Hoe onwaarschijnlijk moet de waarde van onze steekproefstatistiek zijn om te mogen concluderen dat deze statistiek niet bij de H0 verdeling hoort? Het significatie-niveau of alpha (α) is een kans die gebruikt wordt om het concept onwaarschijnlijkheid aan te duiden in een hypothese toets. Het verwerpingsgbied bevat, gegeven dat de nul-hypothese waar is, alle extreme, onwaarschijnlijke, steekproefstatistieken.

Over het algemeen wordt een verwerpingsgbied (α) van 5% of 0.05 aangehouden. Dit verwerpingsgbied is een oppervlakte van de normaalverdeling. Als het gemiddelde z van een steekproefverdeling binnen dit verwerpingsgbied van de normaalverdeling van de populatie van H0 valt, wordt aangenomen dat deze steekproef niet binnen deze populatie valt en een eigen populatie heeft, waarvan het gemiddelde afwijkt van die van H0.

Er zijn twee methoden om het gemiddelde z te vergelijken met α:

  • Methode 1: verwerpingsgbied: z → p ⇔ α. Bepaal het gebied p dat hoort bij de toetsstatistiek z. Als p < α, dan verwerpen we H0. De p is de probability (percentage in de z-tabel) dat rechts van z ligt bij een rechtszijdige Ha. Bij een linkszijdige Ha is het gebied dat links van z ligt de probability, want bij een linkszijdige Ha ligt het verwerpingsgbied aan de linkerkant van de verdeling.

  • Methode 2: verwerpingsgrens: α → zα ⇔ z. Bepaal de grenswaarde zα die hoort bij het verwerpingsgbied α. Als z > zα, dan verwerpen we H0. Deze methode is minder nuttig, want hierbij gebruik je het verschil tussen de waarden zα en z, dit geeft minder informatie dan een oppervlakte p (hierover meer in een volgend college).

Let op of er éénzijdig- of tweezijdig getoetst wordt. Bij tweezijdig toetsen, toets je α namelijk aan twee kanten, dus het verwerpingsgbied wordt links en rechts in de verdeling: α / 2. Bij tweezijdig toetsen verklein je dus het verwerpingsgebied, waardoor je minder snel een hypothese zult verwerpen dan bij een éénzijdige hypothesetoetsing. Om verwarring te voorkomen is het aan te raden om altijd een tekening bij je toetsing te gebruiken, teken dus je normaalverdeling uit en zet de gegevens (z, α, p) erbij.

Type I en type II fout

Het kan voorkomen dat een hypothese onjuist verworpen of behouden wordt:

Een type I fout ontstaat wanneer een onderzoeker de nul-hypothese verwerpt, terwijl de nul-hypothese waar is. Het verwerpingsgbied is onderdeel van de normaalverdeling van een populatie H0 en is meestal 5% of 0.05. Stel dat het gestandaardiseerde steekproefgemiddelde (z) binnen dit verwerpingsgbied valt, je concludeert dan dus dat Ha waar is en H0 niet waar en verwerpt H0. De kans dat H0 onjuist is verworpen is dan (100 x α)% en wordt de type I fout genoemd (kans = α).

Een type II fout ontstaat wanneer een onderzoeker de nul-hypothese niet verwerpt, terwijl de nul-hypothese niet waar is. Als het gestandaardiseerde steekproefgemiddelde (z) niet binnen het verwerpingsgebied valt dan wordt H0 niet verworpen. Er is echter een kans dat het deel van de normaalverdeling van H0 dat niét binnen het verwerpingsgbied valt, ook een deel is van de normaalverdeling van Ha. De kans dat Ha waar is (H0 is dus niet waar) maar we verwerpen H0 toch niet, is dan (100 x β)% en wordt de type II fout genoemd (kans = β).

De oplossing voor een type II fout wordt de Power genoemd en is het tegengestelde van de type II fout, namelijk 1 - β. De power van een toets is de kans op het verwerpen van de nul-hypothese wanneer de nul-hypothese feitelijk niet waar is, en de alternatieve hypothese wel. We vinden over het algemeen een power van 80% of meer acceptabel.

Statistische conclusie en inhoudelijke conclusie

Wanneer er een statistisch significant verschil wordt gevonden, dus z → p < α, of α: z > zα, dan verwerpen we H0. Het al dan niet verwerpen van H0 is uiteindelijk je statistische conclusie. Deze conclusie wordt vervolgens vertaald naar een inhoudelijke conclusie, waarin je formuleert wat de uitkomsten van de getoetste hypotheses zijn.

College 2 Basisconcepten van Waarschijnlijkheid

Toegestane waarden voor kansen

Elke kans ligt tussen 0 en 1. Nul betekent dat er geen kans is dat de gebeurtenis plaats vindt en 1 betekent dat het zeker is dat deze gebeurtenis plaats vindt. De complementregel is de kans dat een gebeurtenis niet plaats vindt. Als een gebeurtenis 40% kans heeft om plaats te vinden is het complement hiervan 1 – 0.4 = 0.6 = 60%. De som van alle mogelijke kansen bij elkaar is 1. Bijvoorbeeld het complement 0.6 + de kans dat de gebeurtenis wel plaats vindt 0.4 = 1.c. De kans van een gebeurtenis wordt aangegeven met een P van probability. Als de P (van gebeurtenis A) hoger is dan de P (van gebeurtenis B) is A waarschijnlijker dan

B. Als P (A) = P (B) dan zijn gebeurtenissen A en B even waarschijnlijk.

Somregel

Bij disjuncte (wederzijds uitsluitende) gebeurtenissen wordt de somregel toegepast om de kans op een gebeurtenis of een andere gebeurtenis te berekenen. De 2 kansen worden bij elkaar opgeteld. Dit wordt aangegeven met: P(A of B) = P(A) + P(B). Op sheet 9 staat hier een voorbeeld van. De twee kansen van 0.009 zijn disjunct omdat het feit dat iemand drager is van MCADD (1x wel gemuteerd, 1x niet gemuteerd) de mogelijkheid tot niet-drager (geen 1x niet gemuteerd of geen 1x wel gemuteerd, of allebei niet) en de mogelijkheid tot het hebben van de ziekte (2x wel gemuteerd) uitsluit; je kunt namelijk niet tegelijkertijd drager en niet-drager of drager en hebber van de ziekte zijn, Hierdoor kun je de twee kansen bij elkaar optellen

Productregel

Bij onafhankelijke kansen pas je de productregel toe. De productregel wordt als volgt genoteerd: P (A en B) = P (A) x P (B). Je berekent met de productregel de kans dat twee onafhankelijke gebeurtenissen gelijktijdig plaatsvinden. Op sheet 13 kun je hier een voorbeeld van zien.

Somregel bij afhankelijke gebeurtenissen

Bij afhankelijke gebeurtenissen voldoet de standaard-somregel niet:

Stel, gebeurtenis blauw en geel zijn afhankelijk van elkaar. Al zou je de standaard-somregel toepassen dan zou je het overlappende gedeelte (groen) 2 keer berekenen, want bij P (geel) neem je het groene stukje mee, maar ook bij P (blauw). Om dit te compenseren moet je van de productregel het groene stukje aftrekken. Dit doe je met behulp van de volgende formule: P(A of B) = P(A) + P(B) − P(A en B). Hierbij is P(A en B) het groene stukje.

Kansregels bij afhankelijke gebeurtenissen

Er zijn drie kansregels die je moet kennen om een uitspraak te kunnen doen over de afhankelijkheid van gebeurtenissen.

  • Marginale kans: De marginale kans beschouwt de kans van één enkele variabele (los van andere variabelen). Op sheet 19 kun je een voorbeeld zien van een marginale kans.

  • Gezamenlijke kans: De gezamenlijke kans beschouwt de kans op een combinatie van gebeurtenissen. Op sheet 20 kun je hier een voorbeeld van zien.

  • Conditionele kans: De conditionele kans is de kans op een gebeurtenis gegeven dat een andere gebeurtenis heeft plaatsgevonden. In formulevorm is de conditionele kans:

  • P(B|A) = P (A en B) / P(A) B|A wilt zeggen de kans op B gegeven dat A heeft plaatsgevonden. Op sheet 21 kun je hier een voorbeeld van zien.

Er zijn twee manieren om een uitspraak te doen over de afhankelijkheid van gebeurtenissen. Als de conditionele kansen van een gebeurtenis ongeveer gelijk is aan de marginale kans van een gebeurtenis zijn de gebeurtenissen onafhankelijk. In formulevorm: P(B|A) = P(B). Hierbij is P (B) de marginale kans en P (B|A) de conditionele kans.

Als de conditionele kansen ongeveer gelijk zijn over alle condities zijn de gebeurtenissen onafhankelijk. Een voorbeeldsom is te vinden voor beide manieren op sheet 23.

Random variabelen

Een random variabele is een variabele verkregen uit een steekproef. Er zijn twee soorten random variabelen te onderscheiden:

  • Discreet: variabelen met een eindig aantal mogelijke waarden

  • Continue: variabelen met een oneindig (hoeft niet letterlijk oneindig, maar ongelooflijk veel) aantal mogelijke waarden, bijvoorbeeld temperatuur.

In het vervolg gaat het om discrete variabelen.

Proporties

In een situatie met verschillende mogelijke uitkomsten is de kans op een bepaalde uitkomst gedefinieerd als een fractie of proportie van alle mogelijke uitkomsten. De formule voor een proportie is proportie = aantal / totaal = f(xi)/n = f(7)/n = 40/400 = 0.108. Na heel veel herhalingen van een steekproef kunnen proporties worden gezien als kansen.

Verwachte waarde

Bij een verdeling met kansen kun je de verwachte waarde berekenen door middel van de formule: xipi. Hierbij is pi de kans op waarde xi en xi de x-waarde. Je vermenigvuldigd dus elke waarde met zijn kans en telt deze allemaal bij elkaar op. De verwachte waarde van een random variabele is het geïdealiseerde gemiddelde: op de lange termijn (grote steekproeven) is x gelijk aan μX. Dit noemt men de wet van grote getallen. Hoe groter een steekproef hoe groter de kans dat het steekproefgemiddelde het populatiegemiddelde benadert.

Variantie

Bij een verdeling met kansen kun je ook de variantie berekenen. De volgende formule hoort daarbij: σ²X i (xi − μX) ² pi en is eigenlijk hetzelfde als de normale formule van de variantie alleen nu voeg je de kansen op een variabele aan de formule toe.

Transformaties

Vermenigvuldigen van b

Soms wil je bepaalde variabelen veranderen van meeteenheid. Een voorbeeld is dat je i.p.v. gewicht in grammen het nu in grains wilt weten. Een grain is 15.43236 keer zo groot als een gram. In plaats van elke variabele apart handmatig circa 15 keer zo groot te maken kun je hier handig een formule voor opzetten. De formule voor een transformatie door middel van vermenigvuldiging is Y = bX, hierbij is b het getal waarmee x vermenigvuldigd wordt. De verdeling wordt hierdoor breder en schuift op. De verwachte waarde en de variantie worden dus groter. De formule voor de nieuwe verwachte waarde is: μY = bμX. De formule voor de nieuwe variantie is: σ2Y = b2σ2X.

Optellen van a

Stel je voor dat je van variabele lengte x bij iedereen 50cm op wilt tellen. Als je dit doet verandert de range en dus ook de variantie van de verdeling niet, maar de verwachte waarde wel (sheet 41). De formule voor zo’n situatie is y = a + X (hierbij is a de 50 cm die bij elke variabele X wordt opgeteld). De formule voor de nieuwe verwachte waarde is μY = a + μX.

Lineaire transformatie

Een lineaire transformatie is een combinatie van optellen en vermenigvuldigen. Een goed praktisch voorbeeld van het gebruik van een lineaire transformatie is het omrekenen van graden naar Fahrenheit, waarbij je eerst de graden vermenigvuldigd met 1.8 en daarna daar 32 bij optelt. De formule van een lineaire transformatie is y = a + bx. De formule voor de nieuwe verwachte waarde is: μY = a + bμX. De formule voor de nieuwe variantie is: σ2Y = b2σ2X.

Som van random variabelen

Stel je hebt een vragenlijst met meerdere variabelen (vragen) en je wilt de somscore van deze variabelen berekenen. Wat gebeurt er met de verwachte waarde en de variantie?

De formule voor de verwachte waarde van twee variabelen als deze bij elkaar worden opgeteld is: μX+Y = μX + μY. Je telt de twee verwachte waardes gewoon op en dat is de verwachte waarde van de som van de variabelen. De formule voor de som van de variantie van variabelen is σ2X+Y = σ2X + σ2Y + 2ρXYσXσY. Als de variabelen gecorreleerd zijn is het gedeelte +2ρXYσXσY van de formule van toepassing, zo niet dan voldoet het optellen van de varianties van de twee variabelen. De somscore van twee gecorreleerde variabelen hebben geen effect op de verwachte waarde (het maakt niet uit of je twee gecorreleerde of niet-correlerende variabelen bij elkaar optelt, het antwoord is hetzelfde).

Dit is anders voor de variantie; een positieve correlatie tussen twee variabelen zorgt voor een grote variantie. Een negatieve correlatie tussen twee variabelen zorgt voor een lage variantie (0)

College 3 Categorische Data en Chi-Kwadraat

Overeenstemming

Stel, een toets wordt beoordeeld door twee verschillende docenten die beide de toets met ‘onvoldoende’, ‘voldoende’ en ‘goed’ kunnen beoordelen. Door hiervan een tabel te maken (sheet 3) kun je de proportie geobserveerde overeenstemming (Po) berekenen. Po wordt berekend door het diagonaal van de tabel bij elkaar op te tellen en te delen door het totaal.

Toeval

Stel nu dat de beoordeling van docent 1 totaal onafhankelijk is van de beoordeling van docent 2, wat is dan de kans dat zij een toets hetzelfde beoordelen? Op sheet 7 kun je zien dat je de proportie overeenstemming (Pe) kunt vinden door de (marginale) kans voor overeenstemming door toeval alleen kunt berekenen met de productregel voor onafhankelijkheid. Het getal dat berekend wordt is de proportie overeenstemming door alleen toeval. De proportie overeenstemming door toeval voor alle beoordelingen samen wordt berekend door het optellen van de overeenstemming door toeval van alle verschillende beoordelingen (onvoldoende, voldoende en goed).

Correctie voor toeval

Nu Po en Pe zijn berekend, kan de proportie overeenstemming gecorrigeerd door toeval worden berekend door: Po - Pe. De maximale overeenstemming kan ook worden berekend en is: 1 - Pe.

Maat van overeenstemming - KAPPA

De voor kans gecorrigeerde proportie overeenstemming als een proportie van de kansgecorrigeerde maximale overeenstemming wordt KAPPA (K) genoemd en wordt berekend door: (∑Po - ∑Pe) / (1 - ∑Pe). Een KAPPA van 1 betekend een perfecte/maximale overeenstemming.

Het probleem met KAPPA is dat er geen steekproevenverdeling is om te toetsen of hij significant afwijkt van 0. Daarom

Read more

Gerelateerde Magazines

Image

Neem vooral ook een kijkje in de Magazine bij het vak Persoonlijke, Klinische en Gezondheidspsychologie voor samenvattingen en tips!

Comments, Compliments & Kudos

Add new contribution

CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Image CAPTCHA
Enter the characters shown in the image.
Image
Access level of this page
  • Public
  • WorldSupporters only
  • JoHo members
  • Private
Statistics
[totalcount] 1
Last updated
13-12-2022
Search