Chapter 6 Derivatives

Slopes

When studying graphs we are usually interested in the slope of the graph. The steepness of a curve at a particular point can be defined as the slope of the tangent (a straight line that touches the curve at a certain point) to the curve at that specific point. The slope of the tangent to a curve at a particular point is the called the derivative of $\int(x)$.

The definition of the derivative is the function ζ at point u, denoted by $\int^{\prime}(x)$, and is given by the formula:

$$
\Gamma^{\prime}(a)=\lim _{h \rightarrow u} \frac{f(a+h)-f(a)}{h}
$$

The equation for the tangent to the graph of $y=f(a)$ at the point $(u, f(a))$ is:

$$
y-f(a)=f^{\prime}(u)(x-u)
$$

Finding the derivative

To find the value of the tangent you need to find the derivative and then substitute the given point a. The standard recipe for calculating the derivative $\Gamma^{\prime}(a)$ is the following:
a) Add \dot{i} to u and compute $\int(u+h)$.
b) Compute the corresponding change in the function value: $\int(u+h)-\int(a)$
c) For $h \neq 0$, form the Newton quotient $\frac{\left(\left\{(4+h)-\int(\langle)\rangle\right.\right.}{i}$.
d) Simplify the fraction and cancel h from the numerator and denominator as much as possible.
e) And then you find $\zeta^{\prime}(a)$ as the limit of this fraction as h tends to 0 .

For example, to find $f^{\prime}(x)$ when $f(x)=4 x^{2}$ by using this definition (the Newton quotient) of derivatives, you need to follow this procedure:

$$
\frac{4(x+h)^{2}-4(x)^{2}}{h}=\frac{8 h x+4 h^{2}}{h}=8 x+4 h
$$

Since ${ }^{h}$ approaches 0 (thus ${ }^{4 h}$ will approach 0), the derivative will simply be $f^{\prime}(x)=8 x$.
There are different ways of writing the derivative. The Leibniz notation, also called the differential notation is the following:

$$
\frac{\mathrm{dy}}{\mathrm{dx}} \frac{\mathrm{df}(\mathrm{x})}{\mathrm{dx}} \text { or } \frac{d}{d x} f(x)
$$

Increasing or decreasing

The definitions of increasing and decreasing functions are the following:

- If $\int\left(x_{2}\right) \geq \int\left(x_{1}\right)$ whenever $x_{2}>x_{1}$, then δ is increasing in interval I.
- If $\int\left(x_{2}\right)>\int\left(x_{1}\right)$ whenever $x_{2}>x_{1}$, then \int is strictly increasing in interval I.
- If $\int\left(x_{2}\right) \leq \int\left(x_{1}\right)$ whenever $x_{2}>x_{1}$, then \int is decreasing in interval I.
- If $\int\left(x_{2}\right)<\int\left(x_{1}\right)$ whenever $x_{2}>x_{1}$, then δ is strictly decreasing in interval I.

When we relate this definition of increasing and decreasing to the derivative, we have the following propositions:

- $\zeta^{\prime}(x) \geq 0$ for all x in the interval $I \Leftrightarrow \gamma$ is increasing in I
- $\gamma^{\prime}(x) \leq 0$ for all x in the interval $I \Leftrightarrow \gamma$ is decreasing in I
- $\gamma^{\prime}(x)=0$ for all x in the interval $\mathrm{I} \Leftrightarrow \gamma$ is constant in I

This makes sense since the derivative represents the slope of a function, and thus if a slope is for instance 2 , the line will rise from left to right: the function is increasing.

For examine, consider the function $f(x)=2 x^{2}-2$ and define where the function is increasing or decreasing.

1. Find the derivative: $f^{\prime}(x)=4 x$.
2. Set the derivative equal to zero, and solve for ${ }^{x}$. Hence, ${ }^{x}=0$.
3. Substitute a value lower than 0 (for instance -2) into the first derivate, and a value higher than 0 (for instance 2). This will allow you to find the intervals for which the function will be increasing or decreasing:

$$
\begin{array}{ll}
f^{\prime}(x)=4(-2) & f^{\prime}(\mathbf{x})=4(2) \\
-8=\text { decreasing } & 8=\text { increasing }
\end{array}
$$

The conclusion is that $f(x)$ is increasing when $x>0$ and decreasing when $x<0$.

Derivatives as rates of change

A derivative measures change, to be precise the average rate of change of f over the interval from a to $\mathrm{a}+\mathrm{h}$. The slope of the tangent line at a particular point is the instantaneous rate of change and is therefore $f^{\prime}(a)$. The relative rate of change of f at point $a_{\text {is }} \frac{f^{\prime}(a)}{f(a)}$. This
measure can be used to describe, for instance, how much a variable changed this year
(written as a percentage). The relative rate of change is sometimes called the proportionate
rate of change.

In economics the word marginal is widely used to indicate a derivative. For example the marginal propensity to consume and the marginal product are both measures of change.

Limits

Writing limis-a $f(x)=A$ means that we can make $\int(x)$ as close to A as we want for all x sufficiently close to (but not equal to) a. Or in other words we can say that $\int(x)$ has the number A as its limit, as x tends ta .

There are some important rules for limits. If $\lim _{x \rightarrow c} f(x)=C$ and $\lim _{x \rightarrow d} g(x)=D$, then:

1) $\lim _{x \rightarrow c}(f(x) \pm g(x))=C \pm D$
$\lim _{x \rightarrow c}(f(x) \cdot g(x))=C \cdot D$
$\lim _{x \rightarrow \varepsilon} \frac{f(x)}{g(x)}=\frac{c}{D}$, if $D \neq 0$
2) $\lim _{x \rightarrow c}(f(x))^{r}=A^{r}$ (if A^{r} is defined and ${ }^{r}$ is any real number)

Differentiation

Differentiation is a process to find the derivative. If a limit exists, then a function is differentiable at x . If the function is a constant, then its derivative is 0 . Also additive constants disappear in the process. Multiplicative constants are however preserved.

The basis of differentiation is the power rule:

$$
f(x)=x^{a} \rightarrow f^{\prime}(x)=a x^{a-1}
$$

In case of the sum or difference of two functions, differentiation is still possible:

$$
F(x)=f(x) \pm g(x) \rightarrow F^{\prime}(x)=f^{\prime}(x) \pm g^{\prime}(x)
$$

However, when we have to differentiate a product of two functions, we need to use the product rule:

$$
F(x)=f(x) \cdot g(x) \rightarrow F^{\prime}(x)=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)
$$

To illustrate this product rule, consider this example. Find the derivative of $F(x)=\left(x^{2}-1\right) \cdot(x+4)$. The process is the following:

1. $f(x)=\left(x^{2}-1\right) \quad f^{\prime}(x)=2 x$, by using the power rule.
2. $g(x)=(x+4) \quad g^{\prime}(x)=x$, by using the power rule.
3. $F^{\prime}(x)=(2 x)(x+4)+\left(x^{2}-1\right)(x)$, by using the product rule.
4. conclusion: $F^{\prime}(x)=x^{3}+2 x^{2}+7 x$

In case of a division of two functions, we need to use the quotient rule:

$$
F^{\prime}(x)=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{t}(x)}{g^{2}}
$$

Again, we illustrate this rule by an example. Find the derivative of $F(x)=\frac{2 x^{2}+1}{4 x-2}$
$f(x)=2 x^{2}+1 f^{\prime}(x)=4 x$
. $g(x)=4 x-2, g^{\prime}(x)=4$
3. Conclusion: $F^{\prime}(x)=\frac{4 x \cdot(4 x-2)-\left(2 x^{2}+1\right) \cdot 4}{(4 x-2)^{2}}$

In case of a composite function, hence $\int(u(x))$, we need to use the chain rule

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

This implies that if y is a differentiable function of u , and u is a differentiable function of x , then y is a differentiable function of x . When $y=u^{4}$ then
$y^{\prime}=a u$
$a-1$
u^{\prime}.
U can be considered as a separate function dependent on x .
Formulated formally, if g is differentiable at κ_{0} and ζ is differentiable at $u_{\|}=g\left(x_{0}\right)$, then $F(x)=\int(\mu(x))$ is differentiable at κ_{0}, and
$F^{\prime}\left(x_{0}\right)=\int^{\prime}\left(w_{0}\right) \mu^{\prime}\left(x_{0}\right)=\int^{\prime}\left(g\left(x_{0}\right)\right) \mu^{\prime}\left(x_{j}\right)$
So to differentiate a composite function, first differentiate the exterior function w.r.t. the kernel, and then multiply by the derivative of the kernel.

Higher order derivatives
$f^{\prime}(x)=$ first derivative
$f^{\prime \prime}(x)=$ second derivative
The procedure for finding the second derivative is based on the same properties as explained above, w.r.t. the first derivative. For example, find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ for $f(x)=4 x^{3}-2 x+1$. The answers are $f^{\prime}(x)=12 x^{2}-2$ and $f^{\prime \prime}(x)=24 x$.

We can find the second derivative, but we can also find for instance the tenth derivative; the $n^{t h}$ derivative is written in the following way: $y^{n}=f^{n}(x)$.

Convexity and concavity

1) fis convex on the interval if $f^{\prime \prime}(x) \geq 0$ for all x^{\prime} s on the interval
2) f is concave on the intervalif $f^{\prime \prime}(x) \leq 0$ for all x^{\prime} s on the interval

The difference between convex and concave will be important when using economic models, but we will discuss this topic later in detail.

Exponential Function

The exponential function is a particular function with particular properties. It is differentiable, strictly increasing and convex.

The following properties hold for all exponents s and t :
a) $\varepsilon^{3} e^{i}=e^{s+i}$
b) $\frac{y^{3}}{e^{i}}=e^{s-t}$
c) $\left(e^{s}\right)^{t}=e^{s i}$

Moreover:
a) $\varepsilon^{x} \rightarrow 0$ as $x \rightarrow-\infty$
b) $e^{x} \rightarrow \infty$ as $x \rightarrow \infty$

To differentiate an exponential function use the following rule:

$$
f(x)=e^{x} \rightarrow f^{\prime}(x)=e^{x}
$$

However, if you have to find the derivative of $f(x)=e^{x^{2}}$, you have to use the chain rule:

$$
f(x)=e^{u t} \rightarrow f^{\prime}(x)=u^{\prime} \cdot e^{2 u}
$$

To differentiate other exponential functions we have to start from the following formula: $u^{x}=\left(e^{i n c t}\right)^{x}=e^{(t u c ; x}$

Therefore when $y=a^{x}$ then $y^{t}=a^{x} l \boldsymbol{l} u$

Logarithmic Functions

The natural logarithmic function $\varphi(x)=h\llcorner x$ is differentiable, strictly increasing and concave in $(0, \infty)$.

By definition $e^{!n x}=x$ for all $x>0$, and line $=x$ for all x . The following properties hold for all positive x and y .
a) $\ln (x y)=\ln x+\ln y$
b) $\ln \left(\frac{x}{y}\right)=\ln x-\ln y$
c) $\ln \left(x^{8}\right)=p \ln x$

To differentiate a natural logarithmic function, use the following formula:

$$
f(x)=\ln x \rightarrow f^{\prime}(x)=\frac{1}{x}
$$

For example, the derivative of $f(x)=\ln x+x^{2}$ is $f^{\prime}(x)=\frac{1}{x}+2 x$.

