
Concepts of Statistics

Chapter 8 

8.1

We are going to discuss two related concepts to regression analysis, namely the correlation analysis. With 

the partial- and semi partial-correlation. The multiple regression models involves the use of two or more 
predictors and one criterion variable; thus there are at minimum three variables involved in the analysis. 

So for the Pearson correlation we only have two variables at a time, so we need a solution for this. This is 
the partial- and semi partial- correlation.

First the partial correlation. The simplest situation is that we have three variables, which we label, X1, 
X2, and X3. So an example of a partial correlation is the correlation between X1 and X2, where X3 is 

held constant. Thus the partial correlation here represents the linear relationship between X1 and X2 
independent of the linear influence of X3. This particular partial correlation is denoted by r12.3. We 

compute this as follows:

There can be some extreme results from this. One example is perfect collinearity, which is a serious 

problem. In this case, either r13, or r23 equal 1, then r12.3 cannot be calculated, as the denominator is 
equal to 0. In this situation the partial correlation is not defined.

We will now look at the concept of semipartial correlation (also called a part correlation). Again the 
simplest situation is that we have three variables, labelled X1, X2, and X3. Here an example of 

semipartial correlation would be the correlation between X1 and X2 where X3 is removed from X2 only. 
Thus the semi partial correlation here represents the linear relationship between X1 and X2 after that 

portion of X2 that can be linearly predicted from X3 has been removed from X2. This particular 
correlation is denoted by r1(2.3). We compute it:

8.2

In this section we will discuss the unstandardized and standardized multiple regression models, the 

coefficient of multiple determination, multiple correlation, tests of significance, and statistical 
assumptions.

The sample multiple linear regression model for predicting Y from m predictors X1,2,….m is 
(unstandardized multiple regression model)
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Where

• Y is the criterion variable (dependent variable).

• Xk are the predictor (independent) variables where k = 1,…,m.

• bk is the sample partial slope of the regression line for Y as predicted by Xk.

• a is the sample intercept of the regression line for Y as predicted by the set of Xk.

• ei represents the residuals or errors of prediction.

• i represents an index for an individual or object. It can take values form 1,...,n.

The term partial slope is used because it represents the slope of Y for a particular Xk in which we have 
partialled out the influence of other Xk.

The sample prediction model is:

Where Yi' is the predicted value of Y. Difference between prediction and the regression model is the same

as in chapter 7. We compute the residuals as follows:

It is hard to determine the sample partial slopes and the intercept. To keep it simple, we use a two-
predictor model for illustrative purposes. Mostly we rely on statistical software. For the two-predictor 

case, the sample partial slopes (b1 and b2) and the intercept (a) are:

An alternative method for computing the sample partial slopes that involves the use of a partial 
correlation is as follows:

In the multiple linear regression model, and almost in all general linear models (GLM), we use the least 

squares criterion. So we need to find a regression model, defined by a particular set of partial slopes and 
an intercept, which has the smallest sum of squares residuals.
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We will now look at the standardized regression model. In this model the terms are expressed in standard 

z score units. The means and variances of the standardized variables are 0 and 1 respectively. The sample 
standardized linear prediction model becomes:

So now what is the utility of the set of predictor variables? The easiest way to look at that involved the 

partitioning of the familiar total sum of squares in Y, which we denote as SStotal. In the multiple 
regression analysis, we can write it as follows:

Where

• SSreg is the regression sum of squares due to the prediction of Y from the Xk (also written as 

SSY’).

• SSres is the sum of squares due to the residuals.

The coefficient is determined not just by the quality of the predictor variables included in the model, but 

also by the quality of the relevant predictor variables not included in the model, as well as by the amount 
of total variation in the dependent variable Y. This coefficient of determination can be used to determine 

effect size (Small effect: R2 = 0.10; medium effect: R2 = 0.30; large effect R2 = 0.50).
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We should note that R2 is sensitive to sample size and to the number of predictor variables. As the 

samples size and/or the number of predictor variables increase, R2 will increase as well. R is a biased 
estimate of the population multiple correlation as to sampling error in the bivariate correlations and in the 

standard deviations of X and Y. In general R overestimates the population multiple correlation. Adjusted 
R2 is calculated as follows:

This adjusted value adjusts for sample size and the number of predictors. So now we can use it to 

compare models fitted to the same set of data with different numbers of predictors or with different 
samples of data. The difference between R2 and adjusted R is called shrinkage.

To make sure the power is enough you can use the power software. However you need to make sure that 
your ratio of n to m is large. Because this will minimize the bias and generalizations are likely to be better

about the population values.

We will now look at the significance tests, we look at two methods used in the multiple regression model. 

The first is to test the significance of the overall regression model and second is test the significance of 
each individual partial slope:

Test of significance of overall regression model

You can frame this alternatively as the test of significance of the coefficient of multiple determinations. 
The hypotheses are as follows:

When H0 is rejected, then one or more of the individual regression coefficients is statistically 
significantly different from 0. The test is based on the following statistic:

Where F indicates it is an F statistic. m is the number of predictors or independent variables. n is the 
sample size.

The F test statistic is compared to the F critical value, always a one-tailed test and at the alpha level, with 
the degrees of freedom being m and (n-m-1). Taken from the F table A.4. This test statistic can also be 

written as:

Where df(reg) = m, and df(res) = (n-m-1).
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Test of significance of bk

This tests whether all the individual unstandardized regression coefficients are statistically significant 

from 0. The hypotheses are:

In the multiple regressions, it is necessary to compute a standard error for each regression coefficient. The

variance error of estimate is computed as follows:

This test statistic is compared to the critical value of t, a two-tailed test for a non-directional H1, at the 
level of alpha, and degrees of freedom of (n-m-1), taken from table A.2. We can form the confidence 

interval as follows:

We will now discuss the assumptions of the multiple regression model. The assumptions are concerned 
with (a) independence, (b) homogeneity, (c) normality, (d) linearity, (e) fixed X, and (f) non-collinearity.

Independence

The simplest procedure to examine this assumption is a residual plot of e versus the predicted values of 
the dependent variable Y’ and of e versus each independent variable Xk. If the assumption is satisfied, the

residuals fall into a random display of points. Lack of independence affects the estimated standard errors 
of the model. For serious violations, one could consider generalized or weighted least squares as a method

of estimation.

Homogeneity

In this assumption the conditional distributions have the same constant variance of all values of X. In the 

residual plot, the consistency of the variance of the conditional distributions may be examined. If the 
assumption is violated, estimates of the standard errors are larger, and the conditional distributions may 

also be non-normal.

Normality

The conditional distributions of the scores on Y, or the prediction errors are normal in shape. Violation of 

the normality assumption may be the result of outliers. You can use the frequency distributions, Q-Q 
plots, and skewness statistics to examine the normality assumption.
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Linearity

There is a linear relationship between the observed scores of the dependent variable Y and the values of 

the independent variables, Xk. If satisfied, then the sample partial slopes and intercept are unbiased 
estimators of the population partial slopes and intercept. If a nonlinear relationship exists, it means that 

the expected increase in Y depends on the value of X. So the expected increase is not a constant value. 
Violation of the linearity assumption can be detected through residual plots. The residuals should be 

located within a band of (standard errors).

Fixed X

The independent variables, Xk are fixed variables rather than random variables. This results in the 

regression model being valid only for those particular values of Xk that where actually observed and used
in the analysis. Generally we may not want to make predictions about individuals having combinations of 

Xk scores outside of the range of values used in developing the prediction model, this si defined as 
extrapolating. Also we may not be quite as concerned in making predictions about individuals having 

combinations of Xk scores within a range of values used in developing the prediction model, this is 
defined as interpolating. There is shown, that when all the other assumptions are met, regression analysis 

performs just as well when X is a random variable.

Noncollinearity

This assumption is unique for the multiple linear regression analysis. A violation of this assumption is 

known as collinearity where there is a very strong linear relationship between two or more of the 
predictors. This can be problematic in several aspects. First, it can lead to instability of the regression 

coefficients across samples, where the estimates will bounce around quite a bit in terms of magnitude and 
even occasionally result in changes in sign. This occurs because the standard errors are larger which 

makes it harder to achieve statistical significance. Second, it could occur that the overall regression is 
significant, but none of the individual predictors are significant. Collinearity will also restrict the utility 

and generalizability of the estimate regression model.

Collinearity may be indicated when there are large changes in estimated coefficients due to (a) a variable 

being added or deleted and/or (b) an observation being added or deleted.

We can detect violations of this assumption by conducting a series of special regression analyses, one for 

each X, where that predictor is predicted by all of the remaining X’s. If any of the resultant values are 
close to 1 (greater than .9, rule of thumb), then there may be a collinearity problem. However large R2 

value can also be due to small sample sizes.

Also if the number of predictors is greater than or equal to n, then perfect collinearity is a possibility (look

at 8.1). Another method for detecting collinearity is to compute a variance inflation factor (VIF) for each 
predictor, which is equal to 1/(1-). The VIF is defined as the inflation that occurs for each regression 

coefficient above the ideal situation of uncorrelated predictors. Many suggest that the largest VIF should 
be less than 10 in order to satisfy this assumption.

There are several methods to deal with collinearity. Frist, one can remove one or more of the correlated 
predictors. Second, ridge regression techniques can be used. Third, principal component scores resulting 

from principal component analysis can be utilized rather than raw scores on each variable. Fourth, 
transformations of the variables can be used to remove or reduce the extent of the problem. The last 

solution is to use simple linear regression, as collinearity cannot exist with a single predictor.
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Assumptions and violations of assumptions: Multiple Linear regression analysis

Assumption Effect of assumption violation

Independence Influences standard errors of the model

Homogeneity Bias in variances of errors

May inflate standard errors and thus increase likelihood of a Type II error

May result in non-normal conditional distributions

Normality Less precise slopes, intercept, and R2

Linearity Bias in slope and intercept

Expected change in Y is not a constant and depends on value of X

Fixed X values Extrapolating beyond the range of X combinations: prediction errors larger, may also 
bias slopes and intercept

Interpolating within the range of X combinations: smaller effect than earlier; if other 
assumptions met, negligible effect

Non-collinearity of
X’s

Regression coefficients can be quite unstable across samples (as standard errors are 
larger)

R2 may be significant, yet none of the predictors are significant

Restricted generalizability of the model.

8.3

The multiple predictor model which we have considered until now, can be viewed as simultaneous 

regression. That means, all of the predictors to be used are entered simultaneously, such that all of the 
regression parameters are estimated simultaneously. There are other methods of entering the independent 

variables where the predictor variables are entered systematically. This class of models is referred to as 
sequential regression (variable selection procedures). We will discuss different such procedures.

Backward elimination

Here the variables are eliminated from the model based on their minimal contribution to the prediction of 
the criterion variable. In the first stage of the analysis, all the potential predictors are included. In the 

second stage, the predictor is deleted from the model that makes the smallest contribution to the 
prediction of the dependent variable. Removing the variable with the smallest t or F statistic can do this. 

In subsequent stages, that predictor is deleted that makes the next smallest contribution. This analysis 
continues until each of the remaining predictors in the model is a significant predictor of Y. This can be 

determined by comparing the t or F statistics for each predictor to the critical value.

Forward selection

In this procedure, variables are added or selected into the model based on their maximal contribution to 

the prediction of the criterion variable. Initially none of the potential predictors are included in the model. 
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In the first stage, the predictor is added to the model that makes the largest contribution to the prediction 

(largest t or F statistic). In the stages following that, the predictor are selected that make the next largest 
contribution to the prediction of Y. This again continues until each of the selected predictors in the model 

is a significant predictor of the outcome Y (comparing t and F-statistics with critical values).

Stepwise selection

This procedure is a modification of the forward selection procedure with one important difference. 

Predictors that have been selected into the model can, at a later step, be deleted from the model. This 
situation can occur for a predictor when a significant contribution at an earlier step later becomes a non-

significant contribution given the set of other predictors in the model. Initially in this model none of the 
potential predictors are included in the model. In the first step, the predictor is added to the model that 

makes the largest contribution to the explanation of the dependent variable (largest t or F statistic). In 
following stages, the predictor is selected that makes the next largest contribution. Also those predictors 

that have been entered at earlier stages are checked to see if their contribution remains significant. If not, 
this predictor is eliminated. This continues until each of the predictor remains significant predictor 

(compare the F or t statistic to critical value).

All possible subsets regression

Let us say that there are five potential predictors. In this procedure, all possible one-, two-, three-, and 

four-variable models are analysed. Thus, there will be 5 one-predictor models, 10 two-predictor models, 
10 three-predictor models, and 5-four predictor models. The best k predictor model can be selected; this is

the one that yields the largest R2.

The researcher is not advised to use this procedure, or for that matter, any of the other sequential 

regression procedures, when the number of potential predictor is large. The number of models will be 
equal to 2m.

Hierarchical regression

In this model the researcher specifies a priori sequence for the individual predictor variables. The analysis
proceeds in a forward selection, backward elimination, or stepwise selection mode. This method is 

different from those previously discussed in that the researcher determines the order of entry from a 
careful consideration of the available theory and research. One type of hierarchical regression is known as

set wise regression (block-wise, chunk-wise, or forced stepwise regression). Here the researcher specifies 
a priori sequence for sets or predictor variables. This method is the same as hierarchical in that the 

researcher determines the order of entry of the variables. The difference is that the set wise method uses 
sets of predictor variables at each stage rather than one individual predictor variable at a time.

There are some comments on the sequential regression procedures. First is that numerous statisticians 
have noted problems with the step wise methods which include (a) selecting noise rather than important 

predictors; (b) highly inflated R2 and adjusted R2 values; (c) CIs for partial slopes that are too narrow; (d)
p values that are not trustworthy; (e) important predictors being barely edged out of the model, making it 

possible to miss the true model; and (f) potentially heavy capitalization on chance given the number of 
models analysed. Second theoretically based regression models have become the norm in many 

disciplines.
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8.4

We will now look at how to deal with nonlinearity. We introduce several multiple regression models for 

when the criterion variables does not have a linear relationship with the predictor variables. First the 
polynomial regression models. In these models, the powers of the predictor variables are used. It is as 

follows:

If the model only consists of X taken to the first power, then this is a simple linear regression model (or 
first-degree polynomial). A second-degree polynomial includes X taken to the second power (quadratic 

model). A third-degree polynomial includes X taken to the third power (cubic model). It is important that 
when a higher-order polynomial is included (quadratic, cubic, or more) the first-order polynomial must 

also be included in the model.

8.5

Another type of model involves the use of an interaction term. These can be implemented in any type of 
regression model. A simple two-predictor interaction-type model is written as:

Where X1X2 is the interaction of predictor variables 1 and 2. The definition of an interaction is the 
relationship between Y and X1 depends on the level of X2. In other words, X2 is the moderator variable. 

Note that if the predictors are very highly correlated, collinearity is likely.

8.6

Until now we have only looked at continuous predictors (independent variables that are interval or ratio in
scale). However, it can also be that you want to have a categorical predictor. However these variables 

need to be recoded, so that they are on a scale of 0 and 1. This is called “dummy coding”. For example 0 
is coded for females, and 1 is coded for males.

8.7

We will now discuss the steps to follow for conducting a multiple linear regression analyses in SPSS. We 

have data with one dependent variable, and two independent variables.

• Go to “analyse” and select “regression” and then select “linear”.

• Click dependent variable and move it into the “dependent” box. Click the independent variables 
in the “Independent(s)” box.

• From the “Linear regression” dialog box, clicking on “statistics” provides options to select. You 

need to select the following (a) estimates, (b) CIs, (c) model fit, (d) R squared change, (e) 
descriptive, (f) part and partial correlations, (g) collinearity diagnostics, (h) Durbin-Watson, and 

(i) case wise diagnostics. Click on “continue”.
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• From the “Linear regression” dialog box clicking on “Plots” also gives options to select. You 
need to check the following: (a) histogram, (b) normal probability plot, (c) produce all partial 

plots. Click on “continue”.

• Now click in the “Linear regression” dialog box in “save”. Under the heading predicted values 
you need to check unstandardized. Under the heading Residuals, check the following (a) 

unstandardized and (b) studentized. Under the heading distances you need to check the following
(a) Mahalanobis, (b) Cook’s, and (c) leverage values. Under the heading Influence Statistics, you

need to check standardized DFBETA(s). Click on “continue” and click on “OK” to generate 
output.

The output is listed on page 395-399.

Some important interpretations from this output:

The adjusted R2 is interpreted as the percentage of variation in the dependent variable that is explained 
after adjusting for sample size and the number of predictors.

We will review the values that we have requested to be saved in our dataset:

• PRE_1 represents the unstandardized predicted values.

• RES_1 represents the unstandardized residuals, simply the difference between the observed and 
predicted values.

• SRE_1 represents the studentized residuals, a type of standardized residual that is more sensitive 

to outliers as compared to standardized residuals. These are computed as the unstandardized 
residuals divided by an estimate of the standard deviation with the case removed. Rule of thumb,

studentized residuals with an absolute value greater than 3 are considered outliers.

• MAH_1 represents Mahalanobis distance values, which measure how far that particular case is 
from the average of the independent variable and thus can be helpful in detecting outliers. The 

squared Mahalanobis distances divided by the number of variables which are greater than 2.5 
(small samples) or 3-4 (large samples) are suggestive of outliers.

• COO_1 Cook’s distance values and provides an indication of influence of individual cases. Rule 

of thumb, Cook’s values greater than 1 suggest that case is potentially problematic.

• LEV_1 represents leverage values, a measure of distance from the respective case to the average 
of the predictor.

• SDB0_1, SDB1_1, and SDB2_1 are standardized DFBETA values for the intercept and slopes, 

and are easier to interpret as compared to their unstandardized counterparts. Standardized 
DFBETA values greater than an absolute value of 2 suggest that the case may be exerting undue 

influence on the calculation of the parameters in the model.

To see if the assumptions are met we need to different things. For the independence assumptions we will 

plot the following (a) studentized residuals against unstandardized predicted values and (b) studentized 
residuals against each independent variable. If the assumption of independence is met the points should 

fall randomly within a band of -2.0 and +2.0.

We can use the same plots to test for homogeneity. Evidence for meeting the assumption is a plot where 

the spread of residuals appears fairly constant over the range of unstandardized predicted values and 
observed values of the independent variables.
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We can also use these plots to review the assumption of linearity. There is linearity if you see a diagonal 

line.

For the normality assumption you can use the methods discussed before, such as the skewness and 

kurtosis statistic. Or you can use the boxplot, Q-Q plot, or the Shapiro-Wilk (S-W) test.

Multicollinearity refers to strong correlations between the independent variables. Detecting this can be 

done by reviewing VIF and tolerance statistics. Tolerance is calculated as (1- R2), and values close to 0 
(0.10 or less) suggest potential Multicollinearity problems. Because a tolerance of 0.10 suggest that 90% 

of the variance in one of the independent variables can be explained by another independent variable. VIF
is 1/tolerance. So values greater than 10 suggest potential Multicollinearity.

8.8

Again we will use G*power to measure the post hoc and priori power of the test. For the post hoc power 

analysis, we need to select the correct test family. This can be done by selecting “tests” then “correlation 
and regression”, and then “Linear multiple regression: fixed model, R2, deviation from zero”. This will 

automatically change the “test family” to the “F test”. The input parameters are: (1) effect size, (2) alpha 
level, (3) total sample size, and (4) number of predictors. We need to use the pop-out effect size calculator

in G*power. Click on “calculate” to compute the effect size, then click on “calculate and transfer to main 
window” to transfer the calculated effect size to “input parameters”.

For the priori power, we can determine the total sample size needed for multiple linear regressions given 
the estimated size f2, alpha level, desired power, and number of predictors. We follow again small effect: 

r2=0.02, moderate effect: r2=0.15, and large effect: r2=0.35.

Did you know ... that as a JoHo member you can make use of thousands of discounts at organisations in The Netherlands and abroad? 11


	Chapter 8
	8.1
	8.2
	Test of significance of overall regression model
	Test of significance of bk
	Independence
	Homogeneity
	Normality
	Linearity
	Fixed X
	Noncollinearity

	8.3
	Backward elimination
	Forward selection
	Stepwise selection
	All possible subsets regression
	Hierarchical regression

	8.4
	8.5
	8.6
	8.7
	8.8


