
Concepts of statistics

Chapter 5

5.1

Causality is a big issue in statistics and philosophy. One reason for this is because there is little agreement

as to exactly what the word causality means. It is usually accepted that causation can be established if we 
satisfy three criteria: association, direction of influence, and isolation. We will discuss these three points 

in more detail

Association

The first thing we learn is that correlation does not mean causation. However you should also remember 

that causation does imply correlation. If two variables are causally related, a change in one must produce 
a change in the other. Therefore, a statistical association (be it a regression coefficient or a correlation) is 

necessary but not sufficient to make a claim of causality.

Direction of causality

If two variables (we call them A and B) are associated, there are three possible reasons for the association:

• It is possible that A is a cause of B.

• It is possible that B may be a cause of A.

• Another variable, C is a cause of both A and B.

Therefore, for any correlation between two variables, it is not evident what the underlying causal 
mechanism is giving rise to the observed association. In other words, we do not know the direction of the 

causality. How can we tell whether A causes B, or B causes A? The answer is that we always expect the 
cause to come first in time, before the effect. If A causes B, a change in A should result in a change in B 

after a particular time period. So we need to be able to demonstrate temporal priority; that is, that changes
in the dependent variable must be observed after a change in the independent variable, in other words A 

always precedes B.

The time interval between cause and effect may vary widely depending on the variable in question. The 

notion of temporal priority is central to the basics of experiment design because the manipulation of the 
independent variable always precedes the measurement of the dependent variable. This temporal 

precedence cannot be observed in non-experimental or cross-sectional research where all data are usually 
collected at one point in time. In this case we rely on mental experiments. Mental experiments are 

decisions about the direction of causality based on theory, previous research and, in many situations, 
common sense.

Isolation

To be certain that an independent variable, A, is a cause of a dependent variable, B, it is necessary to 
isolate the dependent variable (B) from all influences other than the hypothesised cause (A). This 

isolation is what experimentation attempts to achieve. In practice experimentation can only approximate 
isolation, or achieve what is called pseudo-isolation.
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Whereas experimental control can be used to isolate the independent variable, in non-experimental 

research the independent variable(s) cannot be isolated. This needs to be done in another way. Remember 
that a regression slope indicates the effect of the independent variable on the dependent variable while 

holding constant the effect of all other independent variables in the equation. Therefore regression models
can be used to isolate the influence of an independent variable.

To tie together the three criteria discussed above we need to go beyond statistical analysis, we need to 
involve theory. When psychologists collect data, they want to collect data that are both accurate and 

useful. This costs a lot of time. Theory has a most important function in successful use of regression and 
should not be underestimated.

A series of findings, all related to correlations can collectively be evidence of a causal process. This series
of findings is referred to as the signature of that process.

5.2

We will talk about what the effect of the sample size is on the regression analysis. The main idea 

regarding sample size is that, the bigger the sample size is the better. The standard error of a mean is 
equal to:

From this equation you can see that the larger the n, sample size is, the larger the denominator is and the 
standard error will therefore be smaller. This means that your parameter estimates will be more accurate. 

Besides that a lower standard error will increase the chance of finding a significant association. However 
there are problems wit samples that are too large. When a sample is unnecessarily large, collecting more 

data would have wasted expense and time. Also ethical boards spend more time in reviewing the sample 
sizes. They say that participants donate their time in the hope that they may be doing some good.

There are two ways to determine an appropriate sample size. The first is the rules of thumb that represent 
simple rules that suggest minimum sample sizes. The second is a power analysis. We will now discuss 

both methods.

Rule of thumbs are mostly very simple. Green has proposed a method for determining the minimum 

sample size to test the R2 of a regression model. He said that the minimum sample should be greater than 
50 + 8k, where k is equal to the number of independent variable. And if you want to carry out significance

tests on regression slopes, the size should be greater than 104 + k. However such rules of thumb do not 
take into account the expected effect size, or desired power of the test. So such rules lack generality and 

may even mislead.

To use the power analysis we need to have the following pieces of information:

• The value of alpha, this is the level of significance that we use as the criterion for determining 

whether or not we have a significant effect. This value is mostly set at 0.05 (5%). When alpha is 
larger, the more chance we have of finding a significant effect, however the change of setting a 

spurious result also increases. The probability of a type I error is equal to the value of alpha.
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• The size of the effect in the population that we would be interested in. The effect size is in a 
multiple regression equal to the R2. The larger the effect size, the greater the chance of finding 

it. However if the effect size is sufficiently small, then finding it would not be useful. The effect 
size can be determined in three ways:

1. Effect can be based on substantive knowledge.

2. To base an estimate of the effect size based on previous research.

3. Use conventions for determining expected effect size. Cohen has defined the amount of 
effect size for values of R2. When R2= 0.02 it is a small effect size, when R2=0.13 it is a 

medium effect size and when R2=0.26 it is a large effect size.

• An appropriate level of power must be selected. Power is the probability of finding a result given
that the effect does exist in the population. By convention, power is set to 0.80. That gives an 

80% chance of finding a significant result if there is an effect of the specified size in the 
population from which the sample is taken. The probability of a Type II error is 1- power, so in 

this case, 1- 0.80 = 0.20 (20%).

From his information we can calculate the number of participants required. You can use programs such as

G*power to calculate this. From this program you can get some graphs, which show the difference in the 
amount of participants. From this you can draw some conclusions, but you cannot use it for accurate 

power calculation. (See graphs on page 122-125).

5.3

The next issue we will examine is collinearity, sometimes referred to as Multicollinearity. Collinearity 
refers to the size of correlations among the independent variables in a regression calculation. It happens 

because two (or more) independent variables correlate. This means that it is difficult for the regression 
calculation to determine which of them is actually the more important one of the two; it could be either, 

so we have increased uncertainty (standard errors) and inaccuracy (slope coefficient). So we cannot 
decide which variable is important in determining the outcome. The regression calculations imply that 

they take account of this uncertainty, and call it a larger standard error. In more formal terms, when the 
correlation between two independent variables is one (or very close to one) or the multiple correlation 

between any independent variable is one (or very close to one), this is referred to as perfect or complete 
collinearity. It is an assumption of regression that perfect collinearity is not present, and if perfect 

collinearity does occur, most statistical packages will stop and produce an error message. However, 
perfect collinearity is a very infrequent occurrence with real data, unless a data entry or manipulation 

error of some sort has been made. If this does occur, it is most likely that two or more independent 
variables have been summed to create an additional variable that is then also used as an independent 

variable.

A common occurrence that our collinearity is high enough to cause some problems, but not actually high 

enough to violate the assumptions of regression.

When you find regression coefficients that are not significant, when the overall equation is significant, 

you should suspect that collinearity might have played a part. What may have happened in this case is that
the regression equation ‘knows’ that a high proportion of the variance can be explained by the 

independent variables, but it does not know what size parameters estimates to assign to which 
independent variable. If you suspect collinearity problems, there are several methods of determining the 

severity of the problem. We will discuss three of these methods.
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Inspect visually the matrix of correlations amongst the independent variables. If one variable correlates 

fairly high with the other two variables that can be a clue that collinearity is a problem. However, low 
correlation does not indicate that there is no problem. The correlation tells us how much variance two 

variables share. The value we need to know is the proportion of variance in each independent variable, 
which is shared by all of the other independent variables. We can find this out to conduct a multiple 

regression analysis. We need to do a separate regression analysis for every independent variable, which is 
tedious. However, most statistical analysis software will give two other diagnostic statistics to help you to

diagnose collinearity. These are tolerance and the variance inflation factor (VIF).

Tolerance is a very slight extension of R2; the tolerance of an independent variable is the extent to which 

that independent variable cannot be predicted by the other independent variables. Tolerance is calculated 
by 1- R2. If there are only two independent variables in the regression analysis, the value of R (the 

multiple correlation) will be equal to the value of r (the bivariate correlation), and tolerance can therefore 
be calculated from the bivariate correlation matrix. Tolerance varies between zero and one. A tolerance of 

0 for a variable means that it is completely predictable from the other independent variables. Therefore is 
perfect collinearity. If a variable has a tolerance value of 1, this means that the variable is complete 

uncorrelated with the other independent variables.

The variance inflation factor (VIF) is closely related to tolerance. When there are more than two 

independent variables the VIF is calculated using the formula:

This value relates to the amount that the standard error of the variable has been increased because of 
collinearity. The increase in standard error is equal to the square root of the VIF.

However what do you need to do when you find collinearity in your dataset? The best thing to do if 
collinearity is a serious problem is to discard the old data and go and collect new data, which avoids the 

problem in some way. But there are also other options:

1. Collect more data. It is not much of an improvement on collecting new data. Collinearity causes 

the standard errors to increase in size. Increasing the sample size has smaller standard errors, so 
a larger dataset, will in some way, make up for some of the effects of collinearity. It will not help

when you have perfect collinearity

2. Remove or combine variables. If variables are highly correlated this implies that they are 

measuring similar constructs and that the information measured by those variables may be, at 
least partially, redundant. If you are dealing with a large number of independent variables, a 

more technical way of reducing the number of variables is to use principal components analysis 
(PCA). This is similar to factor analysis, in that it groups the original variables into a smaller 

number of uncorrelated ‘factors’.

3. Stepwise entry. This is a form of hierarchical regression. It can be used when collinearity is a 

problem to select variables for analysis. However the only time we might temper this advice is 
when analysis is being carried out purely to predict a dependent variable.

4. Ridge regression. When collinearity is so high that the regression procedure cannot continue, a 
possible solution that has been proposed is ridge regression. This is a complex procedure, which 

is beyond the scope of this book. It is also hard to interpret, therefore is this rarely used.
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5.4

This paragraph is about the one-factor repeated measures ANOVA (“ORMA”) model (OMRA is not an 
actual abbreviation, but used here for convenience.

First of all it is important to discuss this model’s characteristics: The one factor repeated measures model 
makes it possible to examine two or more measurements, forming an extension of the dependent t-test. 

The “repeated” part of ORMA means that each subject responds to each level of factor A (also referred to 
as within-subjects design). In this way subjects function as their own controls, as individual differences 

are taken into account. This has as a consequence, however, that subjects’ scores are not independent 
across the levels of factor A.

Due to subjects and variations caused by the interaction between A and subjects in ORMA, the residual 
variation is further decomposed into variation. This means a reduction in the residual sum of squares, a 

stronger model, and more accuracy in the estimation of the effects on A (which means less subjects are 
needed).

The ORMA is a mixed model. This is due to the fact that the subject-factor is a random effect, while the A
factor is generally a fixed effect. The ORMA can also be seen as a special case of the two-factor mixed-

effects design, only with one subject (n=1) per cell.

The more negative aspects of the ORMA include that there is some risk of carryover effects from one 

level of A to another, due to the fact that each subject responds to all levels of A. These effects can be 
minimized by (1) counterbalancing the administration order of the levels of A in such a way that each 

subject does not receive the same order of the levels of A; (2) letting time pas between the administration 
of the levels; or (3) matching/blocking similar subjects with the assumption that subjects within a block 

are randomly assigned to a level of A (aka randomized block design).

The lay-out for the ORMA model is seen here:

Level of Factor A (Repeated Factor)

Level of Factor S 1 2 … J Row mean

1 Y11 Y12 … Y1J Ȳ1.

2 Y21 Y22 … Y2J Ȳ2.

…. … … … … …

n Yn1 Yn2 … YnJ Ȳn.

Column mean Ȳ.1 Ȳ.2 … Ȳ.J Ȳ..

Here it can be seen as well that the ORMA model is a form of the two-factor model, but with only one 
observation per cell.

Columns are shown as the levels of factor A, and the rows as the subject (factor S). Columns here thus 
represent the different measurements. Subject means are shown, but rarely used.

The formula of model is as follows (written in terms of population parameters):

Yij = μ + αj + si + (sα)ij + εij
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Yij is the observed score on de dependent variable for individual i responding to level j of factor A. μ 

stands for the grand population mean. α is de fixed effect for level j of factor A. si is the random effect for
subject i of the subject factor. (sα)ij is the interaction between subject i and level j. εij is the random 

residual error for individual i in level j.

Measurement error and/or other unconsidered factor scan lead to the residual error. 

For this model the null hypothesis indicates that the means for each measurement are the same. This 
hypothesis is in the terms of means due to the fact that factor A is a fixed effect.

When it comes to assumptions, the ORMA is again very similar to the two-factor mixed-effects model. 
Just like in this model the assumptions of ORMA are mainly about the distribution of the random effects 

and the dependent variable scores. ORMA contains only two new assumption that the two-factor mixed-
effects model does not have:

• Compound symmetry: This assumption states that the co-variances between the subject scores 

remains constant across the levels of the repeated factor A. This assumption is often broken in 
ANOVA, particularly when factor A is time (as the continual change means the co-variances are 

not constant). When this assumption is violated there are three options: (1) limit the levels of 
factor A to (a) those that meet the assumption, or (b) to having only 2 repeated measures; (2) use 

adjusted F-tests; or (3) use MANOVA (multiple analysis of variance), which may be less 
powerful but does not carry the compound symmetry assumption. Interesting to note here is that 

the first counter-measure against carryover effects can also minimize problems with this 
assumption.

• Sphericity: This assumption states that for each pair of factor levels the variance of the 

difference scores is the same. This is the necessary and sufficient condition for the validity of the
F-test (compound symmetry is sufficient but not necessary).

The ANOVA summary table for this model is as follows:

Source SS df MS F

A SSA J – 1 MSA MSA/MSSA

S SSS n – 1 MSS

SA SSSA (J – 1)(n – 1) MSSA

Total SStotal N - 1

With sources of variation the ORMA is again similar to the two-factor model, with the exception that 
ORMA has no within-cell variation. As the table shows the sources of variation here are: A (the repeated 

measure), S (the subjects), SA (the interaction between A and S), and the total. Even though this means 
we can compute three main squares terms, there is only an R-ratio result for factor A. This shows that 

there is no appropriate error term for the subjects’ effect, and this cannot be tested.

The sum of squares for ORMA also needs to be considered. Decomposing the total sum of squares is 

done as follows:

SStotaal = SSA + SSS + SSSA
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The expected mean squares are important for the formation of the proper F-ratio. The expected mean 

squares are, however, dependent on whether the null hypothesis (means are the same for each of the 
measures) is true or not. When H0 is true the expected mean squares are:

• E(MSA) = σε2

• E(MSS) = σε2

• E (MSSA) = σε2

Here σε2 is the population variance of the residual errors.

When H0 is false, the expected mean squares are:

E (M S A)=σ ε
2
+σ sα

2
+n  (∑j=1

J

α j
2

J−1 )
E(MSS) = σε2 + Jσ s2

E(MSSA) = σε2 + σsα2

Here σs2 is the variability due to subjects, and σsα2 is the interaction of factor A and subjects.

The proper F-ratio is formed using this formula:

F= 
s y s t e ma t i c   v a r i a bi l i t y+e r r o r   v a r i ab i l i t y

e r r o r   v a r i ab i l i t y

Due to the earlier discussed compound symmetry assumption, the following procedural sequence is 

recommended for the test of factor A: (1) Do the usual F-test, even though it regularly rejects H0 too 
often. (2a) If H0 is not rejected, stop. (2b) If H0 is rejected, use the Geisser and Greenhouse (1958) 

conservative F-test. The degrees of freedom for the F-critical-value are adjusted to be “1” and “n – 1” in 
this model. (3a) If H0 is rejected, stop, as this is an indication that both tests have reached the same 

conclusion. (3b) If H0 is not rejected a further test needs to be used, in order to break the tie. This is an 
adjusted F-test, with the adjustment being known as Box’s (1954b) correction (aka the Huyn & Feldt 

procedure). The numerator degrees of freedom are “(J – 1)ε”, and the denominator degrees of freedom are
“(J – 1)(n – 1)ε”. The “ε” here is a correction factor (thus not the same “ε” that refers to residuals).

If there are more than two levels of the repeated factor A, and the H0 (for that repeated factor) gets 
rejected, it may be of interest which means are different from one another. This can be assessed by using 

multiple comparison procedures (MCP). Different MCP’s are outlined in chapter 2, and most can be used 
for an ORMA.

However, a violation of the compound symmetry assumption severely affects MCP’s. Thus there are two 
alternatives if this is the case. The first is to use a spare error term for each contrast tested (instead of 

using the same error term, namely MSSA). The second alternative is to use multiple dependent t-tests, in 
which the α-level is adjusted similarly to the way it is adjusted in the Bonferonni procedure.

There are several alternatives to the ORMA model. Most notable is the Friedman test, which is a 
nonparametric procedure based on ranks (much like the Kruskal-Wallis test), but can also be used in a 

repeated measures model. The Friedman test is conducted as follows:
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• Scores are ranked within subject (if there are 6 levels of factor A, the scores for each subject are 
ranked from 1 to 6).

• From these ranks a mean ranking for each level of factor A can be computed.

• Then H0 is a test of whether the mean rankings for the levels of A are equal.

• The test statistic (χ2) is compared to the critical value of αχJ-12. If the test statistic exceeds the 

critical value, the H0 will be rejected.

This test does hold the problem of the test statistic not being precisely distributed as χ2 when the n or J is 

small (specifically when either is below 6). Thus it is important to consult the table of critical values in 
Marascuilo and McSweeney (1997, Table A-22, p. 521).

Just like the Kruskal-Wallis test, the Friedman test assumes that the shape and variability of the 
population distributions is the same, and that the dependent measure is continuous. 

For the Friedman test multiple MCP’s can be used. A multiple-matched-pair Wilcoxon tests in a 
Bonferonni form are best in the case of a planned pairwise comparison.
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