
Concepts of Statistics

Chapter 3

3.1

In this chapter we will discuss the ANOVA model, but not only the one-factor case, but also we will 

extend it to the two- and three-factor models. A characteristic of the two-factor ANOVA model is that it 
considers the effect of two factors or independent variables on a dependent variable. Each factor consists 

of two or more levels. This gives us a factorial design. There are three reasons for including more than 
one factor:

Researcher is interested in studying the second factor. By allowing two factors in one analysis we can 
show the effects of both factors collectively, rather than the effect of each individual factor (main effects).

So we can show interaction effects, this shows us whether the factors are operating independent from one 
another (no interaction exists) or whether they operate together to produce some additional impact 

(interaction exists). In this test we will have to test three hypotheses: one for each factor or main effect, 
and one for the interaction effect.

Also including another factor decreases the error (within-group) variation, which is the variation 
unexplained by the first factor. Because of this a two-factor design is more powerful than a one-factor 

design.

It also provides a greater generalizability of the results, this will allow for more use of the observations.

In the two-factor ANOVA every level of the first factor is paired with every level of the second factor, this
is called a fully crossed design. Individuals are randomly assigned to one of the factors. We consider in 

this chapter that all the factors are fixed, so a fixed-effect model. Another condition for the factorial 
ANOVA is that the dependent variable is measured at least at the interval level and the independent 

variables are categorical (either nominal or ordinal).

So in short, the characteristics of the two-factor ANOVA fixed-effects model are: (a) two independent 

variables (both are categorical), with each two or more levels, (b) levels of independent variables are 
fixed, (c) subjects are randomly assigned to only one combination of these levels, (d) two factors are fully

crossed, and (e) the dependent variable is measured at least at the interval level.

In the context of experimental design, the two-factor ANOVA is also called the complete randomized 

factorial design.

We will now discuss the layout of the data. We name each observation Yijk. Where j tells us what level 

(or category) of factor A the observation belongs to, the k tells us what level of factor B, and the i tells us 
the observation or identification number within that combination of factor A and factor B. The ranges for 

the subscripts are: i= 1,….,n; j=1,….,J; and k=1….K.

There are total of JKn=N observations, because there are J levels of factor A,K levels of factor B and n 

subjects in each cell.
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The two-factor ANOVA model is a form of the general linear model (GLM). The two-factor ANOVA 

fixed-effects model can be written in terms of population parameters as:

This residual error can be due to different thing, for example measurement error, individual differences or
factor not under investigation.

The population effects and residual error can be computed as follows:

          

The row effect is equal to the difference between the population mean of level j of factor A and the overall
population mean. The column effect is equal to the difference between the population mean of level k of 

factor B and the overall population mean.  The interaction effect is the effect of being in a certain 
combination of the levels of factor A and factor B. Whereas the residual error is equal to the difference 

between an individual’s observed score and the population mean of cell jk.

You can also see the row, column and interaction effect as the average effect of being a member of a 

particular row, column or cell.

The sum of the row effect is equal to 0, and also the sum of the column and interaction effect is equal to 

0.   

To estimate the parameter of the model (from formula (37)), we use the least squares method of 

estimation. They are represented by: Y, aj, bk (ab)jk and eijk. Where the last four are computed as 
follows:

As mentioned before, there are three hypotheses. For each of the main effects and one for the interaction 
effect. We can write them as:
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These are all the null hypotheses. 1 and 2 are for the main effects and their alternative hypothesis is that 

not all the means are equal. The third one is the null hypothesis for the interaction effect. If one of the null
hypotheses is rejected, then consider an MCP so as to determine which means, or combination of means, 

are significantly different.

The exact definition of the main effect of factor A is the effect of factor A, averaged across the levels of 

factor B, on the dependent variable Y. So it represents the unique effect of factor A on the outcome Y, 
controlling statistically for factor B.

For the interaction effect the exact definition has different options: An interaction is said to exist if (a) 
certain combinations of the two factors produce effects beyond the effects of the two factors when those 

two factors are considered separately; (b) the mean difference among the levels of factor A are not 
constant across, and thus depend on, the levels of factor B; (c) there is a joint effect of factors A and B on 

Y; or (d) there is a unique effect that could not be predicted from knowledge of only the main effect.

Profile plots of the two factors in ANOVA can give information about the possible existence of a main 

effect for A, a main effect for B, and/or an interaction effect. The main effect for factor A (B) can be 
examined by taking the means for each level of A (B) and averaging them across the levels of B (A). If 

these marginal means are for each level of A the same or nearly so, this will indicate no main effect for 
factor A (B).

The interaction effect is determined by whether the cell means for the levels of A are constant across the 
levels of B (or vice versa). This can be easily checked in the profile plot by determining whether or not 

the lines are parallel. Parallel lines indicate no interaction, whereas nonparallel lines suggest that an 
interaction can exist.

If both lines lie horizontal, there is not effect for A. The other way around when they are not horizontal 
there is a main effect for factor A. When the lines are really close to one another there is not difference in 

the value of B and so not main effect for factor B. When they are far from each other there is a difference 
and so a main effect for factor B. When the lines cross each other exactly in the middle it means there are 

no main effects, because the means for both A and B are the same. (see page 88 for the graphs).

There is made a distinction between the type of interaction shown in the profile plot. An ordinal 

interaction is said to exist when the lines are not parallel and they do not cross. A disordinal interaction is 
said to exist when the lines are not parallel and they do cross.

When there is no significant interaction effect, the main effects can be generalized with greater 
confidence. In this situation the main effects are known as additive effects. However when there is a 

significant interaction effect, the findings regarding the main effects cannot be generalized with such 
confidence.  In this case the main effects are not additive and also the interaction effect needs to be 

included in the model. This is something you can see in the profile plots.

The assumptions and effects of violations for the Two-factor ANOVA design:

1. Independence. The effects of assumption violation:

• Increased likelihood of Type I and/or Type II error in F statistic

• Influences standard errors of means and thus inferences about those means
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2. Homogeneity of variance. The effects of assumption violation:

• Bias in SSwith

• Increased likelihood of a Type I and/or Type II error

• Less effect with balanced or nearly balanced design

• Effect decreased as n increases

3. Normality. The effects of assumption violation:

• Minimal effect with moderate violation

• Minimal effect with balanced or nearly balanced design

• Effect decreases as n increases.

These assumptions look like the assumptions of the one-factor ANOVA. However there are two 

differences. First, the effect of heterogeneity is small with balances designs or nearly balanced designs, 
and/or with larger n’s. Second, the effect of nonnormality seems to be the same as heterogeneity.

We looked with the one-factor ANOVA at the partitioning the sums of squares. For the two-factor 
ANOVA we can partition SStotal into:

SStotal = SSA + SSB + SSAB + SSwith
(40)

SStotal denotes the total sum of squares in Y. This represents the amount of total variation among all of 
the observations without regard to row, column or cell membership. The SSA is the variation between the 

levels of factor A. SSB denotes the variation between the levels of factor B. The variation due to 
interaction between the levels of factors A and B is denotes as SSAB. The variation within the cells 

combined across cells is denoted as Sswith. The ANOVA summary table for the two-factor ANOVA is:

Source SS df MS F

A SSA J-1 MSA MSA/MSwith

B SSB K-1 MSB MSB/MSwith

AB SSAB (J-1)(K-1) MSAB MSAB/MSwi
th

Within SSwit
h

N-JK MSwit
h

Total SStota
l

N-1

These different columns are also explained in the summary table for the one-factor ANOVA. Again the 

MS (mean squares terms) are generated by dividing SS by the degrees of freedom.

The last column, the F statistics is the value with which we will test the hypotheses. Each of the F-values 

will be compared to the F critical value from table A.4 to make conclusions. The null hypothesis is 
rejected if the F test statistic exceeds the F critical value. 
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But when the F statistic does exceed the critical value, and there are more than one degree of freedom for 

the source being testes, then it is not clear precisely why the null hypothesis was rejected. In this case 
some MCP should be used to determine where the mean differences are.

We will now extend the MCP procedures to the two-factor ANOVA model. We will now examine the 
contrasts of both the main and interaction effects. We will begin with the main effects. When the effect for

factor A is significant, and there are more than two levels of factor A, we can form contrasts tat compare 
the levels of factor A, ignoring factor B. Considering each factor separately is advised.

For contrasts involving the interaction, the idea is to begin with a complex interaction contrast if there are 
more than four cells in the model. An example for such contrast is as follows

where njk is the number of observations in cell jk. This contrast would examine the interaction between 
the four methods of factor A and the first two of factor B. If the complex interaction contrast is 

significant, then you can follow this up with a simpler interaction contrast that involves only four cell 
means. This is a single degree of freedom contrast, because it involves only two levels of each factor 

(tetrad difference). Example of such contrast is:

The error term is the same as formula (42). There are various measures of effect size, as discussed in 

chapter 1. For the two-factor ANOVA we will discuss two commonly used measures, which assume equal
variances across the cells. The first is the partial eta squared, eta2. This measure shows the portion of 

variation in Y, which is explained by the effect of interest. This effect of interest can be factor A, factor B 
or the AB interaction. We determine partial eta2  as follows:

As mentioned before CIs can be used for providing interval estimates of a population mean or mean 
difference. For the two-factor ANOVA we can form CIs for row means, column means, cell means, the 

overall mean and any possible contrast formed through an MCP.
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3.1.10 gives an example of all the theory explained  in chapter 3.1

As learned for the one-factor ANOVA the expected mean square for a particular source of variation 

represents the average mean square value for that source obtained if the same study were to be replicated 
an infinite number of times. For the two-factor ANOVA there are two situations. The first is that the H0 is 

actually being true. In this case there is no main effect or interaction effect and the expected mean squares
are:

So when using MSwith as the error term will produce F values around 1.

The second situation is that the H0 is actually false, so there are main effects and an interaction effect. 
Than the expected mean squares are as follows:

In this case, using MSwith as error term will yield F values > 1.

All the information together will gives us that in general the F ratio represents:

F = (systematic variability + error variability)/ (error variability) (48)

Where for the two-factor ANOVA the systematic variability is due to the main or interaction effects. The 

error variability is variability within.

3.2

We will now take a look at the three factor- and higher-order ANOVA model. All of the characteristics 
discussed for the two-factor ANOVA model also apply for the three-factor model. However there is one 

exception, there are now three factors instead of two. This will result in other interactions, namely three 
main effects (one for each factor, A, B and C), there are now three interaction effects (AB, BC, and AC), 

and there will be a three-way interaction (ABC). This three-way interaction is stated as: Is the AB 
interaction constant across all levels of factor C” (or AC across levels of B, or BC across levels of A).

Did you know ... that as a JoHo member you can make use of thousands of discounts at organisations in The Netherlands and abroad? 6



Concepts of Statistics

The model for the three-factor design is:

The hypotheses are the same as the ones for the two-way model, however they are expanded with the new
main effect, interaction effect and the three-way interaction.

Three-factor ANOVA summary table

Source SS Df MS F

A SSA J-1 MSA MSA/MSwith

B SSB K-1 MSB MSB/MSwith

C SSC L-1 MSc MSC/MSwith

AB SSAB (J-1)(K-1) MSAB MSAB/MSwit

h

AC SSAC (J-1)((L-1) MSAC MSAC/MSwit

h

BC SSBC (K-1)(L-1) MSBC MSBC/MSwith

ABC SSABC (J-1)(K-1)(L-1) MSABC MSABC/MSwi
th

Within SSwith N-JKL MSwith

Total SStotal N-1

The row within can be named in SPSS as error. This shows the within group sum of squares that tells us 
how much variation there is within the cells combined across the cells. The row total can ben labelled in 

SPSS as “corrected total” that is the sum of squares total.

All the other things that are used and assumed for the two-factor model are the same for the three-factor 

model. The only new thing is the three-way interaction. If this interaction is significant, then this means 
that the two-way interaction is different across the levels of the third factor.

The inclusion of extra factor will result most of the time in a lower MSwith, which is a good thing. 
However, adding extra factors, also gives more risks. You need to take into account the possibility of 

significant higher-order interactions. This is mostly hard to interpret and deal with it.
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3.3

Until now we have assumed that we will deal with equal n’s or balanced case, this makes the equations 
easier. However this is not always the case, and we will look at the unequal n’s case. When there is an 

unequal n’s case, the main effects and interaction effects are not orthogonal. This means that the sums of 
squares cannot be partitioned into independent effects (as in formula (40)). Thus the individual SS do not 

necessarily add up to the SStotal.

There are three modern approached for the unequal n’s case. Each of these approaches uses different 

hypotheses and thus may not have the same results:

Sequential approach (hierarchical sums of squares approach):

In this approach the effects being tested are as follows:

For example this means, that the effect for factor B () is adjusted or controls for (denoted by the vertical 
line) the overall mean () and the main effect due to the factor A (). (In SPSS this is the Type I sum of 

squares method). Here the interaction is not taken into account in estimating the main effects.

Partially sequential approach (partially hierarchical, or expermimental design, or 
method of fitting constants approach).

In this method the effects are being tested as follows:

The difference with the first method is that in this method every main effect controls for the other main 
effect, but not for the interaction effect. (in SPSS this is called the Type II sum of squared method). This 

is the only method where the sum of the squares will be equal to the total sum of squares.

Also in this method is the interaction effect not included in the determination of the main effects.

Regresion approach (marginal means or unique approach). In this method the effects are being tested as 
follows:

In this method, every effect controls for all the other effects. A difference with the first two methods is 

that this method also includes the interaction effect in the determination of the main effects. (in SPSS this 
is called the Type III sum of squares method). This method is the most used, because it looks most like 

the traditional ANOVA.

When you would use one of these three methods for the balanced n’s case, all of the approaches will give 

the same hypotheses and results.
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3.4

Steps for conducting a factorial ANOVA in SPSS:

• Go to “Analyze” and select “General Linear Model”, and then select “Univariate”.

• Move the dependent variable in the “dependent variable” box. Move first and second 

independent variable in the “Fixed Factors” box and click on “options”.

• Select in “Options” which tests you will do, mostly we select “Descriptive statistics”, “Estimates
of effect size”, “Observed power”, “Homogeneity tests” and “ Spread vs. level plot”. Then click 

on “continue”.

• From the “Univariate” box, click on “Plots” to obtain a profile plot of the means. Click the 
independent variable in the “Horizontal Axis” box. (Most easy to plot the independent variable 

with the most categories or levels on the horizontal axis, this will make it easier to interpret the 
graph). Then click the second independent variable in the “Separate Lines” box. Then click 

“Add” to move the variable into the “Plots” box. Then click on “continue”.

• From the “Univariate” box click on “Post Hoc” to select various post hoc MCPS or click on 
“contrasts” to select various planned MCPs. From the “Post Hoc Multiple Comparisons for 

Observed Means” dialog box, click on the names of the independent variables in the “Factor(s)” 
list and move them to “Post Hoc Tests for” box. Check an appropriate MCP. (Here we use 

“Tukey”). Click on “continue”.

• From “Univariate” box click on “save” and select elements you want to save. (In our case, we 
save the unstandardized residuals that will be used later to examine the extent to which normality

and independence are met). Then click on “Ok” to generate output.

Interpreting the output is important. A lot of the results we already have discussed, but I will add some 

extra points.

The F test that is named in the Levene’s Test of Equality of Error Variances is examined to determine if 

equal variances can be assumed.

The R squared is listed as a footnote underneath the test results. This shows the ratio of sum of squares 

between (i.e. combined SS for main effects and for the interaction) divided by sum of squares total.

The observed power tells us if the test is powerful enough to detect mean differences if they really exist. 

For example, power of 1.000 indicates the maximum probability of rejecting the null hypothesis if it is 
really false (very strong power).

“Sig”-column shows the p values and provides the results of the contrasts.

The Spread vs. level plots are plots of the dependent variable standard deviations (or variances) against 

the cell means. These are used to determine what to do when homogeneity of variance assumption has 
been violated. Homogeneity is suggested when the plot provides a random display of points. If the plot 

suggests linear relationships, transforming the data by taking the log of the dependent variable values may
be a solution to the heterogeneity. Taking the log is a solution because logarithms require positive values. 

Another solution can be transforming the data by taking the square root of the dependent variable values.

We will now look at how we need to examine date for the different assumptions:

Did you know ... that as a JoHo member you can make use of thousands of discounts at organisations in The Netherlands and abroad? 9



Concepts of Statistics

Assumption of normality

We use the residuals to examine the extent to which the normality is met. We use explore to examine the 

extent to which the assumption of normality is met. You can look at a histogram to see if the assumption 
is met. Also other statistics can be used to examine this assumption. The formal test of normality, the 

Shapiro-Wilk (S-W) provides evidence of the extent to which our sample distribution is statistically 
different from a normal distribution.

Also the Q-Q plots are used. If the points fall on or close to the diagonal line, there is evidence of 
normality.

The boxplot can also be used to examine normality. There is evidence for normality if there is a relatively 
normal distributional shape of residuals and no outliers.

Assumption of Independence

We can plot the residuals against levels of our independent variables in a scatterplot to get an idea of 
whether or not there are patterns in the data and thereby provide an indication of whether we have met 

this assumption. We have in this case more independent variables, so we will split the scatterplot by levels
of one independent variable and then generate a bivariate scatterplot for the other independent variable by

residual.

In examining the scatterplots for evidence of independence, the points should fall relatively randomly 

above and below a horizontal line at 0.

We will now look at the Post Hoc power and the Priori power of the factorial ANOVA. First we will 

discuss the Post Hoc power. When there are multiple independent variables, G*Power must be calculated 
for each main effect and for each interaction. This is already explained in chapter 2.

Second, we look at the priori power. We can determine the total sample size needed for the main effects 
and/or interactions given an estimated effect size, f, alpha level, desired power, numerator degrees of 

freedom and number of groups or cells. Also see chapter 2 for the explanation.
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