Chapter 23: Linear, second-order differential equations

A linear, second-order differential equation has the form:
$\ddot{y}(t)+\alpha_{1} \dot{y}(t)+\alpha_{2} y(t)=\beta$

Solving linear, autonomous, second-order differential equations

1. Write in general form: $\ddot{y}(t)+\alpha_{1} \dot{y}(t)+\alpha_{2} y(t)=\beta$
2. Use the characteristic equation $r^{2}+\alpha_{1} r+\alpha_{2}=0$ to find the roots (r). The lowest root is always the first root $\left(r_{1}\right)$ you use in the homogeneous solution.
3. Compute the homogeneous solution:
$y_{h}(t)=\quad C_{1} e^{r t}+C_{2} e^{r 2 t} \quad$ if r_{1} is not equal to r_{2}

$$
\mathrm{C}_{1} \mathrm{e}^{r t}+\mathrm{C}_{2} \mathrm{te} \mathrm{e}^{t t} \quad \text { if } r_{1}=r_{2}=r
$$

4. Compute particular solution:
$y_{p}(t)=\beta / \alpha_{2} \quad$ if α_{2} is not 0
5. Report general solution
$y(t)=y_{h}(t)+y_{p}(t)$
6. Compute constants C_{1} and C_{2} such that the initial conditions are satisfied
7. Report solution. Substitute the answers of step 6 into the general solution to find the end solution.

The solution of a linear, second-order differential equation only converges toward to steady-state equilibrium if the roots of the characteristic equation are negative.

Solving linear, non-autonomous, second-order differential equations

1. Write in general form: $\ddot{y}(t)+\alpha_{1} \dot{y}(t)+\alpha_{2} y(t)=\beta(t)$
2. Use the characteristic equation $r^{2}+\alpha_{1} r+\alpha_{2}=0$ to find the roots (r). The lowest root is always the first root $\left(r_{1}\right)$ you use in the homogeneous solution.
3. Compute the homogeneous solution:

$$
\begin{array}{cl}
y_{h}(t)= & C_{1} e^{r t t}+C_{2} e^{r 2 t} \\
C_{1} e^{r t}+C_{2} t e^{r t} & \text { if not equal to } r_{2}=r_{2}=r
\end{array}
$$

4. Compute the particular solution with the method of undetermined coefficients:
$y_{p}(t)=A_{n} t^{n}+A_{n-1} t^{n-1}+\ldots+A_{1} t+A_{0}$

Differentiate this formula to $\dot{\mathrm{y}}(\mathrm{t})$ and $\ddot{\mathrm{y}}(\mathrm{t})$. Plug these two formulas into the general form en than solve for all A's
5. Report general solution
$y(t)=y_{h}(t)+y_{p}(t)$
6. Compute C_{1} and C_{2} such that the initial conditions are satisfied
7. Report solution. Substitute the answers of step 6 into the general solution to find the end solution.

