## Chapter 22: Nonlinear, first-order differential equations

For an autonomous, nonlinear, first-order differential equation the **initial-value problem** is expressed as:

$$\dot{y} = g(y)$$

$$y(t_0) = y_0$$

If g and its derivative are continuous and contain the point  $(t_0, y_0)$ , then somewhere around  $t_0$  there is a unique solution  $y = \xi(t)$  that satisfies the two equations mentioned above.

We know that there is a solution in this case. However it can be very difficult to find this solution. A common method used in this case is a **qualitative analysis** often with a **phase diagram**. This method is used for nonlinear, first-order differential equations.

## Qualitative analysis with phase diagram

y as a function of y

- 1. Draw the axes for the phase diagram with  $\dot{y}$  on the vertical axis and y on the horizontal axis
- 2. Compute the steady-state solutions by solving y=0 for y. Mark these points on the horizontal axis.
- 3. Compute the extremums by solving dý/dy=0
  - When  $d(d\dot{y}/dy) / dy > 0$ , there is a minimum (convex)
  - When  $d(d\dot{y}/dy) / dy < 0$ , there is a maximum (concave)
- 4. Draw y as a function of y
- 5. Compute dý/dy in the steady-states. These steady-states were found in step 2.
  - When dy/dy< 0, means the equilibrium point is a **stable point**
  - When dy/dy > 0 means the equilibrium point is an unstable point