Chapter 15: Concave programming

Concave programming is used for problems where the functions f and g are concave.

With concave programming and inequality constraints we do not use the normal Lagrangian but we use the **Kuhn-Tucker Lagrangian**:

$$L(x, \lambda, \mu) = f(x) + \lambda g(x) + \mu x$$

Slater's condition: if f and g are concave and differentiable, and there is a point (x_1^0, x_2^0) such that $g(x_1^0, x_2^0) > 0$, then there is a Lagrange multiplier λ^* such that the K-T conditions are necessary for the point to be a solution to the problem.

Steps for constrained optimization with inequality:

Format of the problem is: $\max y = ...$ s.t. $x_1 \le b$ etc.

- 1. Identify the objective function f(x)
- 2. Rewrite the constraint as $g(x) \ge 0$
- 3. Construct the Kuhn-Tucker Lagrangian:

$$L(x, \lambda, \mu) = f(x) + \lambda g(x) + \mu x$$

- 4. Compute the FOCs
 - $dL/dx_1 = 0$, $dL/dx_2 = 0$ etc.
 - $\lambda * dL/d\lambda = 0$
 - $\mu_1 * dL/d\mu_1 = 0$, $\mu_2 * dL/d\mu_2 = 0$ etc.
- 5. Solve FOCs. Start with implying that $\lambda > 0$ and x > 0, leading to $\mu = 0$