Chapter 12: Direct restrictions on variables

Steps optimization without restrictions:

1. Compute the first order conditions (FOCs) f_{1} and f_{2}
2. Solve FOCs
3. Compute the Hessian Matrix (H):

$$
\left[\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right]
$$

4. $\mathrm{H}_{1}=\mathrm{f}_{11}$ and $\mathrm{H}_{2}=$ determinant of H

- if $\mathrm{H}_{1}($ abs $)<0$ and $\mathrm{H}_{2}($ abs $)>0 \rightarrow$ the point is a maximum
- if $\mathrm{H}_{1}(\mathrm{abs})>0$ and $\mathrm{H}_{2}(\mathrm{abs})>0 \rightarrow$ the point is a minimum
- if f_{11} and f_{22} have opposite signs \rightarrow the point is a saddle point

Steps optimization with restrictions:

1. Compute the first order conditions (FOCs) f_{1} and f_{2}. From these conditions one can calculate x_{1} and x_{2}.
2. Check for an interior solution. If x_{1} and x_{2} are both in the given range, then there is an interior solution. Then set up the Hessian Matrix (H):
$\left[\begin{array}{ll}f_{11} & f_{12} \\ f_{21} & f_{22}\end{array}\right]$
$\mathrm{H}_{1}=\mathrm{f}_{11}$ and $\mathrm{H}_{2}=$ determinant of H

- if $\mathrm{H}_{1}(\mathrm{abs})<0$ and $\mathrm{H}_{2}(\mathrm{abs})>0 \rightarrow$ the point is a maximum
- if $\mathrm{H}_{1}($ abs $)>0$ and $\mathrm{H}_{2}($ abs $)>0 \rightarrow$ the point is a minimum
- if f_{11} and f_{22} have opposite signs \rightarrow the point is a saddle point
- otherwise, the point is neither an extremum or saddle point.

3. Check for boundary solutions
4. Derive the boundary solutions
5. Check theorem: condition for maximum or minimum

One of the following conditions must hold for a maximum:

- $f_{i}\left(x^{*}\right) \leq 0$ and $\left(x_{i}^{*}-a_{i}\right) f_{i}\left(x^{*}\right)=0$
- $f_{i}\left(x^{*}\right) \geq 0$ and $\left(b_{i}-x_{i}^{*}\right) f_{i}\left(x^{*}\right)=0$
for all $\mathrm{i}=1, \ldots, \mathrm{n}$

One of the following conditions must hold for a minimum:

- $f_{i}\left(x^{*}\right) \geq 0$ and $\left(x_{i}^{*}-a_{i}\right) f_{i}\left(x^{*}\right)=0$
- $f_{i}\left(x^{*}\right) \leq 0$ and $\left(b_{i}-x_{i}^{*}\right) f_{i}\left(x^{*}\right)=0$
for all $\mathrm{i}=1, \ldots, \mathrm{n}$

Note: if $a_{i}<x_{i}<b_{i}$ then both conditions hold.

