
Chapter 7: Distributional statistical inference

This chapter involves statistical inference for distributions and does not assume a 

known standard deviation any longer.

7.1: One-sample t distributions

One-sample t-tests

Instead of z-tests we will now look at t-tests and t-distributions. We will use the sample 

standard deviation s to estimate for the now unknown ơ. When we do this (estimating 

the ơ from data) we end up with a standard error, in this case, of the sample mean. 

This is calculated with this formula: 

SE  = s / √n

When we substitute the standard error in the formula for a z-statistic you end up with 

the formula below for a one sample t statistic.

t

To test the null hypothesis: Ho: µ = µo you use this formula to find the test statistic. The 

p-values can then be found according to:

∙ Ha: µ > µo is P(T ≥ t)

∙ Ha: µ < µo is P(T ≤ t)

∙ Ha: µ ≠ µo is 2P(T ≥  )

Use Table D to find the p-values. This new statistic has a new distribution, called a t 

distribution and has (n – 1) degrees of freedom. We use t(k) to stand for the amount k 

of degrees of freedom in a t distribution. Notice how the more degrees of freedom a t 

distribution has the more Normal it becomes, this is due to having a greater sample 

size. This also means that s will be more like ơ the higher the n. It is also noticeable 

how the t-distribution has more probability in the extremes and less in the centre, as a 

result of the extra variability of now using an unknown population standard deviation.

One-Sample t confidence intervals

By filling in the standard error into the formula for m in the z confidence interval and by 

replacing z* with t* you get the formula for a t confidence interval:

±t*(s/ )

where m = t*is the margin of error. This is accurate when the distribution is Normal and 

roughly accurate for a large sample size otherwise.
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With confidence intervals, one normally gives the actual interval as an outcome of the 

formula, however sometimes it is preferred to report the mean and the margin of error 

instead.

Matched Pairs t procedures

Comparative studies are preferred over single-sample studies and there is one such 

comparative design that makes use of single-sample procedures: the matched pairs 

study. This is where participants are matched up in pairs according certain 

characteristics that are important to that study, and then their results are compared. 

Matched pairs are also used when randomization is impossible.

To do a matched pairs t procedure you use the differences between the two 

measurements as the data for the analysis and find the mean and the standard 

deviation of this data for the t test. The null hypothesis used focusses on if there is a 

difference or not. In most circumstances we cannot be sure of which direction to use in 

a one-sided test and so it is always safest to use a two-sided test, so µ = 0 or µ ≠ 0.

Problems with matched pair procedures are that randomization is not possible, data 

may not be Normal and sample sizes can be very small.

T-test robustness

It never occurs that real populations are exactly Normal, and t procedures depend on 

Normality. Robustness is how easily affected by non-Normality a procedure is. The less

strongly affected the more robust. This applies to other violations of the assumptions 

made about statistical inference.

T procedures are fairly robust against non-Normality except for when there is strong 

skewness or outliers involved. T procedures are not robust against outliers as  and s 

are not resistant to outliers. If n < 15 you can use the t test if the data is close to 

Normal only, and no outliers are present. If n ≥ 15 then you can use the t test always 

except for when there are outliers or strong skewness. When n ≥ 40 the t test can 

always be used, even in the case of skewness.

Equivalence tests

When specific research does not indicate significance, this does not necessarily mean 

that the null hypothesis is true. In that case an equivalence test can be done. This test 

makes use of a confidence interval (for instance of 90%) to prove that the average 

difference is around 0 and that the results are acceptable.

Assume that n is the population and μ the average. When the significance level is α 
and μ must be equivalent within a range of μ0, and the interval is μ0 ± δ, then the 
equivalence test is performed as follows:

• Calculate the confidence interval for which C = 1 – 2 α.
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• Vergelijk dit interval met de marge van equivalentie.

• Compare this interval with the range of equivalence.

• Only when the confidence interval falls entirely within the interval that was 
decided upon beforehand, the conclusion is that μ is equivalent to μ0.

Also with the help of statistical software equivalence tests can be performed.

Introduction resampling and bootstrapping

What can you do when the population does not follow the normal distribution and only 

a small sample can be taken? To approximate the sample distribution of , a bootstrap

is used. Pretend as if the available population is the entire population and draw many 

small samples, each called a resample. Then calculate the average  for each sample.

The resulting distribution can be treated as the sample distribution. Applying statistical 

inference, despite the lack of available data you can still get an idea of what the sample

distribution would be like.

7.2: Two-sample Statistical Inference

In two-sample problems the aim is to infer by comparing two independent and 

randomized groups from the same population. Each group is exposed to different 

treatments and the two groups may differ in size. Comparing two randomized groups 

from different populations can also be a two-sample problem. There is no matching up 

of pairs in two-sample problems. You tell the two groups apart by giving each group a 

number and putting the number as an subscript next to each statistic for that group, for 

example µ1, µ2, n1, n2, ơ1 and ơ2. We test the null hypothesis for no difference: Ho: µ1 = 

µ2. An overview of the notations used in the different groups is given here below:

Population Variable Mean Standard Deviation
1 x1 μ1 σ1

2 x2 μ2 σ2

Sample Group Sample Size Sample Mean Sample Standard

Deviation
1 n1

1
s1

2 n2
2

s2

Two-sample z tests

To compute the difference in means one uses  1 -  2. This is Normally distributed if the 

two population distributions are Normal. Compute the difference in variance.

The two-sample statistic is now:
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This has a Normal N(0,1) sampling distribution and the groups were randomly 

sampled. Note this is for the unlikely event that both standard deviations are known.

Two-sample t procedures

Substituting the ơ’s with the known s’s in the z-test formula gives the two sample t 

statistic:

Unfortunately this does not have a t distribution as we have replaced not just a single 

standard deviation by its sample standard deviation but two instead and this no longer 

gives such a distribution. However we are able to approximate the distribution by using 

an approximation of the degrees of freedom k. You can either do this by using software 

or by choosing the k that is smaller one of n1 – 1 and n2 – 1.

Significance test: The two sample t significance test formula, to test the null hypothesis 

Ho: µ1 = µ2, is:

where the degrees of freedom are either approximated by software or are the smaller 

of n1 – 1 and n2 – 1.

Confidence Interval: The same ideas count for the two-sample t confidence interval:

( 1- 2) ± t*.

The degrees of freedom are calculated in the same way as with the significance test.
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Two-sample robustness

Two-sample t procedures are even more robust than one-sample t procedures, and are

the most robust against non-Normality when sample sizes of both groups are the 

same. Because of this it is advisable to have the same sample sizes for both groups 

wherever possible.

When choosing which population to label 1 and which 2, it is best to choose the one 

with the higher statistic as 1 so as not to get a negative value for t.

Statistical inference for small samples

Often you can draw conclusions about a population even when the sample size is 

small. Especially with a big effect size as this should then be noticeable even with 

smaller n’s.

Degrees of freedom

How much difference is acceptable, is indicated by the degrees of freedom. There are 

formulas to calculate the degree of freedom (df) but it is easier to use statistical 

software, as most software has a function or button that calculates this. Using software 

also results in a higher confidence level.

Pooled t procedures

When two Normal population distributions have the same ơ2 then you get exactly a t 

distribution. To do this you must find the pooled estimator of ơ2:

sp
2 =  ((n1 - 1)s1

2 + (n2 - 1)s2
2) / (n1 + n2 - 2).

now becomes:ơ2 .

The z test therefore becomes:

From all of this we can derive the pooled two-sample t inference procedure:

The degrees of freedom in this case are n1 + n2 – 2. The p-values can then be found 

according to:

∙ Ha: µ1 > µ2 is P(T ≥ t)

∙ Ha: µ1 < µ2 is P(T ≤ t)

∙ Ha: µ1 ≠ µ2 is 2P(T ≥  )
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A C level confidence interval for µ1 - µ2 is calculated using:

( 1- 2) ± t*sp
2 .

This pooled two-sample t inference procedure requires the assumption that both 

standard deviations are the same, which is very difficult to confirm, making this 

procedure quite risky to use. This procedure is quite robust against non-Normality and 

unequal standard deviations in the cases of the sample sizes being nearly the same. 

Unless the n’s are large, use the pooled two-sample t inference procedure with caution 

when the n’s are different in size and there are unequal standard deviations.

7.3 Extra information on inference

Choosing the sample size

Software can assist in determining sample size. Choosing the right size makes the 

confidence interval bigger and makes the chance of errors occuring smaller. To 

determine the size, the following are needed:

• Confidence level C

• The maximum range for possible errors m

• The critical value t* for which C has no more than n – 1 degrees of freedom

• The guessed value of the population standard deviation s*

Then the formula is as follows:

m ≤ t* s* /  n

The guessed value of the population standard deviation can be retrieved from similar or
pilot research. To minimalise the possibility of errors, it is best to estimate the standard 
deviation a little bigger than you would expect it to be.

The amount of data usually becomes smaller as research progresses, for instance due 
to participants quitting. Keep this in mind when determining the sample size.

Power of the t-test

Power in statistical testing is its capability to identify deviations from Ho, and so high 

power is desirable as we always want to prove the null hypothesis false. As noted in 

the previous chapter: The power of a significance test to detect an alternative value 

than the one indicated in the null hypothesis is the probability that the significance test 

will reject the null hypothesis when the alternative is true. Calculate the power in a t test

by:
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1. Choose the standard deviation, the alternative value, α and whether the test is 

one- or two-sided.

Note: it is always better to use a s that is slightly bigger than the one we 

expect than to use a smaller one. Use this when rounding up values for the 

standard deviation.

2. Find all values of  with which we can reject the null hypothesis.

3. Find the probability of detecting these values when the alternative is true.

Power of two-sample t tests

To find the power of the pooled two-sample t test, considering only the case where Ho: 

µ1 = µ2, state the alternative value, the sample sizes, α, a guess of ơ, the degrees of 

freedom (df=n1+n2-2) and the value of t* that will lead to rejection of the Ho. You also 

need to calculate the noncentrality parameter for the alternative of interest using:

δ =  .

You can perform this calculation by using software or by approximating the power as 
P(z > t* - δ) and by using table A. The denominator in this formula is the estimate of the
standard error. This can be used in the margin of error formula when calculating 
confidence intervals. If however we do not assume both standard deviations are equal 
then we use the formula below as the standard error estimate and in the denominator 
of the previous formula. All of this gives a noncentral t distribution.

Non-Normal populations

All inference tests taught so far is based on Normality. Here are 3 tactics to deal with 

non-Normality, due to a small sample size:

• If the distribution can be described by a different standard distribution, then use 

inference procedures based on that model.

• If the problem is skewness, one can transform the data before performing t 

tests and confidence intervals. The most used transformation is logarithm, 

which pull the right tail of the distribution in. So instead of analysing the original 

values analyse the logarithms of these values, which are much less skewed.
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• Some inference procedures do not need a particular population distribution. You

can therefore use these so-called nonparametric or distribution-free procedures.

This tactic does have its downsides though; these tests are less powerful than 

the t test and they focus on the median and therefore do not ask the same 

questions as a t test would.

Sign test

A sign test is the simplest and most useful nonparametric procedure. All the variations 
of the sign test are based on counts and the binomial B(n,½) distribution. We will only 
discuss the sign test for matched pairs here. The null hypothesis in this case is: Ho: p = 
½ and the alternative can be both one- and two-sided, depending on the case. Recall 
the knowledge you already have about matched pairs, and remember this looks at the 
differences between the pairs. When doing a sign test for matched pairs, ignore the 
pairs with no difference and n becomes the number of left-over pairs. The test statistic 
is now the count X of all the pairs with a positive difference. Do not forget that this test 
is testing the Ho that the median, not the mean, of the differences is 0.

8


