Inferential Statistics (IBP, Leiden University),

Answers with the workgroups from 2018/2019

Answers

Week 1

Theory

- a. Population mean: $\bar{x},$ Sample mean, μ
- b. H_0 is what we expect to see happen based on the knowledge we have, H_a is what we suppose happens if the null hypothesis is not true
- c. The p-value is the probability that you find what you find
- d. The limit after which we state that the null hypothesis is not true and we assume the alternative hypothesis as probable.

Application

2 and 5 are correct

Week 2

- a. Event A alters event B or vice versa.
- b. Event A and B cannot exist or occur at the same time.
- c. They cannot.
- d. **1.** P(A|B) = P(A) + P(B) P(A&B)= P(B) **4.** $P(A\&B) = P(A) \times P(B|A)$ **5.** $P(A\&B) = P(A) \times P(B)$ **3.** 1 - P(A)
- e. There is no chance of you knowing the outcome
- f. P(x) = F(x)/n
- g. $\mu_{\bar{x}} = \sum \bar{x}_n \times p_n$
- h. $\sigma_x^2 = \sum (x_i \mu_x)^2 \times p_i$
- i. $\mu_{x+y} = \mu_x + \mu_y$
- j. $\sigma^{2}_{x+y} = \sigma^{2}_{x} + \sigma^{2}_{y} + 2p_{xy} \times \sigma_{x} \times \sigma_{y}$

Week 3

- a. Numerical data can only take certain, definite values, while categorical values can be anything.
- b. When they don't alter or influence each other's results in any way.
- c. Goodness of fit, Independence and homogeneity
- d. Number of cells that can be filled in freely with only restrictions of marginal totals
- e. Number of cells that can be filled in freely with only restrictions of marginal totals 1
- f. $fe(A \text{ and } B) = f(A) \times f(B) / n$
- g. $X^2 = \Sigma$ (Observed Expected) / Expected

Inferential Statistics (IBP, Leiden University),

Answers with the workgroups from 2018/2019

Week 4

- a. H_0 is regular
- b. *S*_{*x*}
- c. σ_x
- d. T = $\bar{x} \mu / S_x$
- e. $z = \bar{x} \mu / \sigma_x$
- f. One-sided

Week 5

- a. $H_0: \mu_d = 0$ and (if one-sided) $H_a: \mu_d </> 0$ or (if two- sided) $H_a: \mu_d \neq 0$
- b. $H_0: \mu_1 \mu_2 = 0$ and (if one-sided) $H_a: \mu_1 \mu_2 </> 0$ or (if two- sided) $H_a: \mu_1 \mu_2 \neq 0$
- c. 1. Df = number of pairs observed 1. 2. Df = The smallest of the two n's 1. 3. $n_1 + n_2 2$.
- d. $t = \bar{x}_1 \bar{x}_2 / se$

$$se_{\bar{x}_1-\bar{x}_2} = \sqrt{\frac{s_1^2}{n_1} \pm \frac{s_2^2}{n_2}}$$

e. Because most of the time μ_1 - μ_2 is equal to 0

f.
$$t = \bar{D}/se$$
 $se_d = S_d / \sqrt{n}$

Week 6

Theory

- a. That in 95% of all samples, the mean falls within two standard errors of the population mean.
- b. $CI_{1-\alpha} = \bar{x} \pm t^* \times SE$
 - a. $t^* = t_{\alpha/2} (df)$
 - b. SE = s/\sqrt{n}
- c. $CI_{1-\alpha} = (\bar{x}_{1} \bar{x}_{2}) \pm t^{*} \times SE_{\bar{x}_{1}-\bar{x}_{2}}$
- d. Effect size: $\eta^2 = t^2 / (t^2 + df)$
- e. Cohen's d: $\hat{d} = \bar{x} \mu_0 / s$

Application

 $\dot{\rm D}$ is correct, a is technically true as well but has nothing to do with the interpretation of the 95% CI

Inferential Statistics (IBP, Leiden University),

Answers with the workgroups from 2018/2019

Week 7

Theory

- a. Distribution- free data that does not, or rarely makes claims about a population, as well as for resampling tests or ordinal data
- b. When dealing with ordinal data or with continuous data that has a small n and a skewed sample distribution, in the case when you don't know anything about the population.
- c. Paired = signed rank, Independent = rank sum
- d. You take the average.
- e. $\mu = n(n+1) / 4$ $\sigma = n(n+1)(2n+1)/24$
- f. $\mu = n_1 (n_1 + n_2 + 1) / 2$ $\sigma = n_1 \times n_2 (n_1 + n_2 + 1) / 12$ g. $z = T + -\mu_{T^*} / \sigma_{T^*}$ $T = W \mu_W / \sigma_W$

Application

a. 4, 4, 5, 6, 6, 7, 8, 9, 9, 9, 10, 14, 14, 15, 15, 17, 18, 19, 22, 36															6				
4	4	5	6	6	7	8	9	9	9	1	14	14	15	15	1	1	1	2	3
										0					7	8	9	2	6
1.5	1.	3	4.	4.	6	7	9	9	9	1	12.	12,	14.	14.	1	1	1	1	2
	5		5	5						1	5	5	5	5	6	7	8	9	0

No brain damage (n=9) = 53 Mean is 115,5 brain damage (n=11) = 157 Mean is 94.5 Standard dev. = 13.16Z = -3.153P = 0.016 $H_0 = rejected$

Week 8

a. $\varphi = \sqrt{(x^2/n)}$

b. $V = \sqrt{(x^2/n(k-1))}$