Blok AWV HC13: Beslisbomen

HC13: Beslisbomen

3 deuren probleem

Een beslisboom bestaat uit takken met beslisknopen en eindknopen. Een voorbeeld is het drie deuren probleem, waarbij achter 1 deur een auto staat. Vervolgens wordt van 1 deur bekend wordt dat deze fout is waardoor de kans 50% is dat achter 1 van de overgebleven deuren het goede zit. Vervolgens kan de persoon die voor 1 van de overgebleven 2 deuren staat besluiten om wel of niet te wisselen. Voor beide opties zijn 2 mogelijkheden:

  • Niet wisselen
    • Eerst goede deur → kans van 1/3 → de auto wordt gewonnen
    • Eerst foute deur → kans van 2/3 → niks wordt gewonnen
  • Wel wisselen
    • Eerst goede deur → kans van 1/3 → niks wordt gewonnen
    • Eerst foute deur → kans van 2/3 → de auto wordt gewonnen

Dit zijn de kansen vóór het wisselen. Deze analyse laat zien dat in het geval dat er niet gewisseld wordt, de kans op het winnen van de auto 1/3 is, terwijl als er wel gewisseld wordt, de kans 2/3 is.

Spijt:

Spijt ontstaat als de persoon eerst goed stond, en daarna wisselde waardoor de auto alsnog niet is gewonnen.

Opmerkingen:

Een aantal opmerkingen bij het 3-deuren probleem zijn:

  • De goede beslissing geeft niet steeds de beste uitkomst
    • Proces- versus uitkomstkwaliteit
    • Effectiviteit versus bijwerkingen
  • Het beslissingscriterium bepaalt de optimale beslissing
    • Wat is het doel?
      • Vooral de auto willen hebben of geen spijt willen hebben?
    • Geanticipeerde spijt → achteraf geen spijt willen hebben

Beslisbomen

Met beslisbomen kunnen problemen geanalyseerd worden:

  • Structuur
    • Keuzeknopen, kansknopen en eindknopen
    • Van links naar rechts
  • Getallen
    • Getallen bij de kansknopen
    • De kans op een hele “tak” is p1x p2x …
    • Uitkomsten staan bij de eindknopen
  • Analyseren en optimaliseren
    • Bereken de verwachtingswaarde voor elke beslissing
    • Kies d ebeste verwachte waarde

Verwachtingswaarde:

Over het algemeen is de verwachtingswaarde ongeveer “het midden” → in een continue of normale verdeling is de verwachtingswaarde de mediaan. Echter is de uitkomst bij beslisbomen niet continu → er zijn meerdere mogelijkheden. Zo zijn er bij het gooien van een dobbelsteen 6 mogelijkheden, die allemaal een kans van 1/6 hebben. De verwachtingswaarde van een dobbelsteenworp is daarom:

  • 1/6 x 1 + 1/6 x 2 + 1/6 x 3 + 1/6 x 4 + 1/6
... Interested? Read the instructions below in order to read the full content of this page.

Access options

 

The full content is only visible for Logged in World Supporters.

More benefits of joining World Supporter

  • You can use the navigation and follow your favorite supporters
  • You can create your own content & add contributions
  • You can save your favorite content and make your own bundles
  • See the menu for more benefits

Full access to all pages on World Supporter requires a JoHo membership

  • For information about international JoHo memberships, read more here.

 

 

Support JoHo and support yourself by becoming a JoHo member

 

Become a Member

 

 

Contributions, Comments & Kudos

Add new contribution

CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Image CAPTCHA
Enter the characters shown in the image.
Summaries & Study Note of nathalievlangen
Join World Supporter
Join World Supporter
Log in or create your free account

Why create an account?

  • Your WorldSupporter account gives you access to all functionalities of the platform
  • Once you are logged in, you can:
    • Save pages to your favorites
    • Give feedback or share contributions
    • participate in discussions
    • share your own contributions through the 11 WorldSupporter tools
Content
Access level of this page
  • Public
  • WorldSupporters only
  • JoHo members
  • Private
Statistics
4
Selected Categories