TentamenTests bij Experimenteel en Correlationeel Onderzoek - Oefententamen 1 - UL


Vragen

Vraag 1

Het idee bestaat dat vrouwen minder drinken dan mannen. Er zijn 10 mannen en 10 vrouwen onderzocht en er is gemeten of ze meer dan 2 glazen alcohol per dag drinken (veel; (Y = 1)) of minder (weinig; (Y=0)). Dit zijn de resultaten

 Vrouwen (X = 0)Mannen (X = 1)Totaal
Weinig (Y = 0)639
Veel (Y=1)4711
Totaal101020

Hoe groot is phi en hoe groot is chi-kwadraat voor deze situatie?

  1. -0.30 en 6
  2. -0.30 en 1.8
  3. 0.30 en 6
  4. 0.30 en 1.8

Vraag 2

Een verkeerspsycholoog heeft de volgende relatie tussen snelheid (X in km/h) en het aantal ongelukken in een jaar (Y) van motorrijders gevonden:

\[ŷ = 1.0 + 0.05x\]

Je weet dat meneer Jansen gewoonlijk rijdt met een snelheid van 160 km per uur. Hoeveel ongelukken zal hij krijgen per jaar?

  1. 80
  2. 81
  3. 9
  4. 8

Vraag 3

 In een groot onderzoek is een correlatie van 0.354 gevonden tussen kennis van de Nederlandse taal (X) en salaris (Y). Daarnaast weten we dat:

Rekenkundig gemiddelde = steekproef gemiddelde = 3

Sx = 2

Sy = de wortel van 2

Wat is de regressievergelijking als we Y uit X willen voorspellen?

  1. ŷ = 2.25 + 0.25X
  2. ŷ = 3.75 + 0.25X
  3. ŷ = 1.50 + 0.50X
  4. ŷ = 4.50 + 0.50X

Vraag 4

Een onderzoeker wil het wiskundecijfer (Y) voorspellen uit de cijfers voor Engels (X1) en Nederlands (X2). De onderzoeker verwacht een positief verband tussen Y en X1 en X2. Hij verzamelt van 10 kinderen uit een VWO-klas de cijfers voor deze vakken en voert een regressie-analyse uit. Die levert het onderstaande resultaat op:

ModelBStd. ErrorBetatSignificantie
(Constant)-1.9262.725 -0.7070.503
Engels1.2690.4360.8052.9070.023
Nederlands-0.0460.404-0.032-0.1150.912

Piet scoort voor Engels en Nederlands beide een 6, wat is het voorspelde cijfer voor wiskunde van Piet?

  1. 5.064
  2. 5.412
  3. 9.264
  4. 9.864

Vraag 5

Een onderzoeker wil het wiskundecijfer (Y) voorspellen uit de cijfers voor Engels (X1) en Nederlands (X2). De onderzoeker verwacht een positief verband tussen Y en X1 en X2. Hij verzamelt van 10 kinderen uit een VWO-klas de cijfers voor deze vakken en voert een regressie-analyse uit. Die levert het onderstaande resultaat op:

ModelSSDFMSFSig.
Regression22.370211.1855.7440.033
Residual13.63071.947  
Total36.0009   

Hoe groot is de proportie verklaarde variantie (VAF)?

  1. 0.379
  2. 0.609
  3. 0.621
  4. 0.100

Vraag 6

Een onderzoeker wil het wiskundecijfer (Y) voorspellen uit de cijfers voor Engels (X1) en Nederlands (X2). De onderzoeker verwacht een positief verband tussen Y en X1 en X2. Hij verzamelt van 10 kinderen uit een VWO-klas de cijfers voor deze vakken en voert een regressie-analyse uit. Die levert het onderstaande resultaat op:

ModelBStd. ErrorBetatSignificantie
(Constant)-1.9262.725 -0.7070.503
Engels1.2690.4360.8052.9070.023
Nederlands-0.0460.404-0.032-0.1150.912

Zijn B1 en B2 significant als er eenzijdig getoetst wordt met alfa = 0.02?

  1. B1 en B2 zijn beide niet significant
  2. B1 wel, B2 niet
  3. B1 niet, B2 wel
  4. B1 en B2 zijn beide wel significant

Vraag 7

Een onderzoeker wil het wiskundecijfer (Y) voorspellen uit de cijfers voor Engels (X1) en Nederlands (X2). De onderzoeker verwacht een positief verband tussen Y en X1 en X2. Hij verzamelt van 10 kinderen uit een VWO-klas de cijfers voor deze vakken en voert een regressie-analyse uit. Die levert het onderstaande resultaat op:

ModelBSt.d ErrorBetatSignificantie
(Constant)-1.9262.725 -0.7070.503
Engels1.2690.4360.8052.9070.023
Nederlands-0.0460.404-0.032-0.1150.912

Wat is het aantal vrijheidsgraden van de t-toets?

  1. 7
  2. 8
  3. 9
  4. Er is niet genoeg informatie om deze vraag te beantwoorden

Vraag 8

Uit een onderzoek met 60 werknemers is gebleken dat wanneer Job Performance (JP) wordt voorspeld uit Employment Test (ET), we de volgende regressievergelijking vinden:

1.598 + .214 x ET

Daarnaast:
r = .817
ET gemiddeld = 91.27
JP gemiddeld = 21.13
SET = 18.011
SJP = 4.714
Se = 2.744
 
Welke stelling over deze laatste waarde is juist?

Stelling I: Se wordt ook wel de standard error of estimate genoemd en geeft de spreiding van de residuen weer

Stelling II: Se squared = MSe

  1. Beide stellingen zijn juist
  2. Alleen stelling I is juist
  3. Alleen stelling II is juist
  4. Beide stellingen zijn onjuist

Vraag 9

Voor het uitvoeren van een ANOVA zijn bepaalde voorwaarden. Wat zijn die voorwaarden?

  1. De binnengroepsvariantie mag niet teveel verschillen van de tussengroepsvariantie, de onafhankelijke variabele moet normaal verdeeld zijn, en personen zijn onafhankelijk van elkaar
  2. De binnengroepsvariantie mag niet teveel verschillen van de tussengroepsvariantie en de errortermen moeten normaal verdeeld zijn
  3. De varianties in de verschillende condities mogen niet teveel verschillen, de onafhankelijke variabele moet normaal verdeeld zijn en de observaties zijn onafhankelijk
  4. De varianties in de verschillende condities mogen niet teveel verschillen en de errortermen moeten normaal verdeeld en onafhankelijk zijn

Vraag 10

 We onderzoeken de invloed van 3 verschillende antipsychotica op mate van angst en vinden de volgende gemiddelden en standaarddeviaties:

ConditieXiNiSi
13.41.77
22.81.57
34.52.17

Voer de ANOVA uit, kan H0 verworpen worden met alfa = 0.05?

  1. Nee, P > 0.05
  2. Ja, 0.025 < P < 0.05
  3. Ja, 0.01 < P < 0.025
  4. Ja, P < 0.01

Vraag 11

We onderzoeken de invloed van 3 verschillende antipsychotica op mate van angst. De mate van angst wordt gemeten door middel van een vragenlijst, waarbij een hoge score duidt op veel angst. De onderzoeker vermoed dat conditie A betere resultaten oplevert dan andere condities. Daarnaast verwacht hij dat conditie B slechtere resultaten oplevert dan conditie C. Wat zijn de correcte alternatieve hypothesen bij deze vermoedens?

  1. Vermoeden 1: Ua – Ub – Uc < 0 Vermoeden 2: Ub – Uc > 0
  2. Vermoeden 1: Ua – Ub – Uc < 0 Vermoeden 2: Ub – Uc < 0
  3. Vermoeden 1: 2Ua – Ub – Uc < 0 Vermoeden 2: Ub – Uc > 0
  4. Vermoeden 1: 2Ua – Ub – Uc > 0Vermoeden 2: Ub – Uc < 0

Vraag 12

 B1B2B3Gem.
A13755
A24565
Gem.3.565.55

Gemiddelden van een 2 x 3 factorieel experiment met 5 proefpersonen per cel zijn gegeven:

Als SSE = 132.4 en we toetsen het hoofdeffect van B, kan de nulhypothese dan verworpen worden?

  1. Nee, P > 0.05
  2. Ja, 0.025 < P </= 0.05
  3. Ja, 0.01 < P </= 0.025
  4. Ja, P < 0.01

Vraag 13

We willen de sterkte van een verband tussen een factor met 3 categorieën en de responsvariabelekunnen vergelijken over een aantal onderzoeken waarin ook nog andere – en per onderzoek verschillende – factoren een rol spelen. Wat is hiervoor de meest geschikte maat?

  1. r square
  2. punt biseriele correlatie squared
  3. n squared
  4. n squared partial

Antwoordindicatie

1. D

2. C

Toelichting: 1.0 + 0.05 * 160 = 9

3. A

4. B

Toelichting: -1.926 + 1.269 x 6 + -0.046 x 6 = 5.412

5. C

Toelichting: 22.370 / 36.000 = 0.621

6. B

Toelichting: eenzijdige toetsing, dus p-waardes mogen door 2 gedeeld worden

7. A

Toelichting: n – p – 1 = 10 – 2 – 1

8. A

9. D

10. A

11. C

12. A

13. D

Contributions, Comments & Kudos

Add new contribution

CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Image CAPTCHA
Enter the characters shown in the image.
Summaries & Study Note of Psychologie World Supporter
Join World Supporter
Join World Supporter
Log in or create your free account

Why create an account?

  • Your WorldSupporter account gives you access to all functionalities of the platform
  • Once you are logged in, you can:
    • Save pages to your favorites
    • Give feedback or share contributions
    • participate in discussions
    • share your own contributions through the 11 WorldSupporter tools
Content
Access level of this page
  • Public
  • WorldSupporters only
  • JoHo members
  • Private
Statistics
57
Connect & Continue